reader.go 22.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package jpeg implements a JPEG image decoder and encoder.
//
// JPEG is defined in ITU-T T.81: http://www.w3.org/Graphics/JPEG/itu-t81.pdf.
package jpeg

import (
	"image"
	"image/color"
	"image/internal/imageutil"
	"io"
)

// TODO(nigeltao): fix up the doc comment style so that sentences start with
// the name of the type or function that they annotate.

// A FormatError reports that the input is not a valid JPEG.
type FormatError string

func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) }

// An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature.
type UnsupportedError string

func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) }

var errUnsupportedSubsamplingRatio = UnsupportedError("luma/chroma subsampling ratio")

// Component specification, specified in section B.2.2.
type component struct {
	h  int   // Horizontal sampling factor.
	v  int   // Vertical sampling factor.
	c  uint8 // Component identifier.
	tq uint8 // Quantization table destination selector.
}

const (
	dcTable = 0
	acTable = 1
	maxTc   = 1
	maxTh   = 3
	maxTq   = 3

	maxComponents = 4
)

const (
	sof0Marker = 0xc0 // Start Of Frame (Baseline).
	sof1Marker = 0xc1 // Start Of Frame (Extended Sequential).
	sof2Marker = 0xc2 // Start Of Frame (Progressive).
	dhtMarker  = 0xc4 // Define Huffman Table.
	rst0Marker = 0xd0 // ReSTart (0).
	rst7Marker = 0xd7 // ReSTart (7).
	soiMarker  = 0xd8 // Start Of Image.
	eoiMarker  = 0xd9 // End Of Image.
	sosMarker  = 0xda // Start Of Scan.
	dqtMarker  = 0xdb // Define Quantization Table.
	driMarker  = 0xdd // Define Restart Interval.
	comMarker  = 0xfe // COMment.
	// "APPlication specific" markers aren't part of the JPEG spec per se,
	// but in practice, their use is described at
	// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html
	app0Marker  = 0xe0
	app14Marker = 0xee
	app15Marker = 0xef
)

// See http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
const (
	adobeTransformUnknown = 0
	adobeTransformYCbCr   = 1
	adobeTransformYCbCrK  = 2
)

// unzig maps from the zig-zag ordering to the natural ordering. For example,
// unzig[3] is the column and row of the fourth element in zig-zag order. The
// value is 16, which means first column (16%8 == 0) and third row (16/8 == 2).
var unzig = [blockSize]int{
	0, 1, 8, 16, 9, 2, 3, 10,
	17, 24, 32, 25, 18, 11, 4, 5,
	12, 19, 26, 33, 40, 48, 41, 34,
	27, 20, 13, 6, 7, 14, 21, 28,
	35, 42, 49, 56, 57, 50, 43, 36,
	29, 22, 15, 23, 30, 37, 44, 51,
	58, 59, 52, 45, 38, 31, 39, 46,
	53, 60, 61, 54, 47, 55, 62, 63,
}

// Deprecated: Reader is deprecated.
type Reader interface {
	io.ByteReader
	io.Reader
}

// bits holds the unprocessed bits that have been taken from the byte-stream.
// The n least significant bits of a form the unread bits, to be read in MSB to
// LSB order.
type bits struct {
	a uint32 // accumulator.
	m uint32 // mask. m==1<<(n-1) when n>0, with m==0 when n==0.
	n int32  // the number of unread bits in a.
}

type decoder struct {
	r    io.Reader
	bits bits
	// bytes is a byte buffer, similar to a bufio.Reader, except that it
	// has to be able to unread more than 1 byte, due to byte stuffing.
	// Byte stuffing is specified in section F.1.2.3.
	bytes struct {
		// buf[i:j] are the buffered bytes read from the underlying
		// io.Reader that haven't yet been passed further on.
		buf  [4096]byte
		i, j int
		// nUnreadable is the number of bytes to back up i after
		// overshooting. It can be 0, 1 or 2.
		nUnreadable int
	}
	width, height int

	img1        *image.Gray
	img3        *image.YCbCr
	blackPix    []byte
	blackStride int

	ri                  int // Restart Interval.
	nComp               int
	progressive         bool
	jfif                bool
	adobeTransformValid bool
	adobeTransform      uint8
	eobRun              uint16 // End-of-Band run, specified in section G.1.2.2.

	comp       [maxComponents]component
	progCoeffs [maxComponents][]block // Saved state between progressive-mode scans.
	huff       [maxTc + 1][maxTh + 1]huffman
	quant      [maxTq + 1]block // Quantization tables, in zig-zag order.
	tmp        [2 * blockSize]byte
}

// fill fills up the d.bytes.buf buffer from the underlying io.Reader. It
// should only be called when there are no unread bytes in d.bytes.
func (d *decoder) fill() error {
	if d.bytes.i != d.bytes.j {
		panic("jpeg: fill called when unread bytes exist")
	}
	// Move the last 2 bytes to the start of the buffer, in case we need
	// to call unreadByteStuffedByte.
	if d.bytes.j > 2 {
		d.bytes.buf[0] = d.bytes.buf[d.bytes.j-2]
		d.bytes.buf[1] = d.bytes.buf[d.bytes.j-1]
		d.bytes.i, d.bytes.j = 2, 2
	}
	// Fill in the rest of the buffer.
	n, err := d.r.Read(d.bytes.buf[d.bytes.j:])
	d.bytes.j += n
	if n > 0 {
		err = nil
	}
	return err
}

// unreadByteStuffedByte undoes the most recent readByteStuffedByte call,
// giving a byte of data back from d.bits to d.bytes. The Huffman look-up table
// requires at least 8 bits for look-up, which means that Huffman decoding can
// sometimes overshoot and read one or two too many bytes. Two-byte overshoot
// can happen when expecting to read a 0xff 0x00 byte-stuffed byte.
func (d *decoder) unreadByteStuffedByte() {
	d.bytes.i -= d.bytes.nUnreadable
	d.bytes.nUnreadable = 0
	if d.bits.n >= 8 {
		d.bits.a >>= 8
		d.bits.n -= 8
		d.bits.m >>= 8
	}
}

// readByte returns the next byte, whether buffered or not buffered. It does
// not care about byte stuffing.
func (d *decoder) readByte() (x byte, err error) {
	for d.bytes.i == d.bytes.j {
		if err = d.fill(); err != nil {
			return 0, err
		}
	}
	x = d.bytes.buf[d.bytes.i]
	d.bytes.i++
	d.bytes.nUnreadable = 0
	return x, nil
}

// errMissingFF00 means that readByteStuffedByte encountered an 0xff byte (a
// marker byte) that wasn't the expected byte-stuffed sequence 0xff, 0x00.
var errMissingFF00 = FormatError("missing 0xff00 sequence")

// readByteStuffedByte is like readByte but is for byte-stuffed Huffman data.
func (d *decoder) readByteStuffedByte() (x byte, err error) {
	// Take the fast path if d.bytes.buf contains at least two bytes.
	if d.bytes.i+2 <= d.bytes.j {
		x = d.bytes.buf[d.bytes.i]
		d.bytes.i++
		d.bytes.nUnreadable = 1
		if x != 0xff {
			return x, err
		}
		if d.bytes.buf[d.bytes.i] != 0x00 {
			return 0, errMissingFF00
		}
		d.bytes.i++
		d.bytes.nUnreadable = 2
		return 0xff, nil
	}

	d.bytes.nUnreadable = 0

	x, err = d.readByte()
	if err != nil {
		return 0, err
	}
	d.bytes.nUnreadable = 1
	if x != 0xff {
		return x, nil
	}

	x, err = d.readByte()
	if err != nil {
		return 0, err
	}
	d.bytes.nUnreadable = 2
	if x != 0x00 {
		return 0, errMissingFF00
	}
	return 0xff, nil
}

// readFull reads exactly len(p) bytes into p. It does not care about byte
// stuffing.
func (d *decoder) readFull(p []byte) error {
	// Unread the overshot bytes, if any.
	if d.bytes.nUnreadable != 0 {
		if d.bits.n >= 8 {
			d.unreadByteStuffedByte()
		}
		d.bytes.nUnreadable = 0
	}

	for {
		n := copy(p, d.bytes.buf[d.bytes.i:d.bytes.j])
		p = p[n:]
		d.bytes.i += n
		if len(p) == 0 {
			break
		}
		if err := d.fill(); err != nil {
			if err == io.EOF {
				err = io.ErrUnexpectedEOF
			}
			return err
		}
	}
	return nil
}

// ignore ignores the next n bytes.
func (d *decoder) ignore(n int) error {
	// Unread the overshot bytes, if any.
	if d.bytes.nUnreadable != 0 {
		if d.bits.n >= 8 {
			d.unreadByteStuffedByte()
		}
		d.bytes.nUnreadable = 0
	}

	for {
		m := d.bytes.j - d.bytes.i
		if m > n {
			m = n
		}
		d.bytes.i += m
		n -= m
		if n == 0 {
			break
		}
		if err := d.fill(); err != nil {
			if err == io.EOF {
				err = io.ErrUnexpectedEOF
			}
			return err
		}
	}
	return nil
}

// Specified in section B.2.2.
func (d *decoder) processSOF(n int) error {
	if d.nComp != 0 {
		return FormatError("multiple SOF markers")
	}
	switch n {
	case 6 + 3*1: // Grayscale image.
		d.nComp = 1
	case 6 + 3*3: // YCbCr or RGB image.
		d.nComp = 3
	case 6 + 3*4: // YCbCrK or CMYK image.
		d.nComp = 4
	default:
		return UnsupportedError("number of components")
	}
	if err := d.readFull(d.tmp[:n]); err != nil {
		return err
	}
	// We only support 8-bit precision.
	if d.tmp[0] != 8 {
		return UnsupportedError("precision")
	}
	d.height = int(d.tmp[1])<<8 + int(d.tmp[2])
	d.width = int(d.tmp[3])<<8 + int(d.tmp[4])
	if int(d.tmp[5]) != d.nComp {
		return FormatError("SOF has wrong length")
	}

	for i := 0; i < d.nComp; i++ {
		d.comp[i].c = d.tmp[6+3*i]
		// Section B.2.2 states that "the value of C_i shall be different from
		// the values of C_1 through C_(i-1)".
		for j := 0; j < i; j++ {
			if d.comp[i].c == d.comp[j].c {
				return FormatError("repeated component identifier")
			}
		}

		d.comp[i].tq = d.tmp[8+3*i]
		if d.comp[i].tq > maxTq {
			return FormatError("bad Tq value")
		}

		hv := d.tmp[7+3*i]
		h, v := int(hv>>4), int(hv&0x0f)
		if h < 1 || 4 < h || v < 1 || 4 < v {
			return FormatError("luma/chroma subsampling ratio")
		}
		if h == 3 || v == 3 {
			return errUnsupportedSubsamplingRatio
		}
		switch d.nComp {
		case 1:
			// If a JPEG image has only one component, section A.2 says "this data
			// is non-interleaved by definition" and section A.2.2 says "[in this
			// case...] the order of data units within a scan shall be left-to-right
			// and top-to-bottom... regardless of the values of H_1 and V_1". Section
			// 4.8.2 also says "[for non-interleaved data], the MCU is defined to be
			// one data unit". Similarly, section A.1.1 explains that it is the ratio
			// of H_i to max_j(H_j) that matters, and similarly for V. For grayscale
			// images, H_1 is the maximum H_j for all components j, so that ratio is
			// always 1. The component's (h, v) is effectively always (1, 1): even if
			// the nominal (h, v) is (2, 1), a 20x5 image is encoded in three 8x8
			// MCUs, not two 16x8 MCUs.
			h, v = 1, 1

		case 3:
			// For YCbCr images, we only support 4:4:4, 4:4:0, 4:2:2, 4:2:0,
			// 4:1:1 or 4:1:0 chroma subsampling ratios. This implies that the
			// (h, v) values for the Y component are either (1, 1), (1, 2),
			// (2, 1), (2, 2), (4, 1) or (4, 2), and the Y component's values
			// must be a multiple of the Cb and Cr component's values. We also
			// assume that the two chroma components have the same subsampling
			// ratio.
			switch i {
			case 0: // Y.
				// We have already verified, above, that h and v are both
				// either 1, 2 or 4, so invalid (h, v) combinations are those
				// with v == 4.
				if v == 4 {
					return errUnsupportedSubsamplingRatio
				}
			case 1: // Cb.
				if d.comp[0].h%h != 0 || d.comp[0].v%v != 0 {
					return errUnsupportedSubsamplingRatio
				}
			case 2: // Cr.
				if d.comp[1].h != h || d.comp[1].v != v {
					return errUnsupportedSubsamplingRatio
				}
			}

		case 4:
			// For 4-component images (either CMYK or YCbCrK), we only support two
			// hv vectors: [0x11 0x11 0x11 0x11] and [0x22 0x11 0x11 0x22].
			// Theoretically, 4-component JPEG images could mix and match hv values
			// but in practice, those two combinations are the only ones in use,
			// and it simplifies the applyBlack code below if we can assume that:
			//	- for CMYK, the C and K channels have full samples, and if the M
			//	  and Y channels subsample, they subsample both horizontally and
			//	  vertically.
			//	- for YCbCrK, the Y and K channels have full samples.
			switch i {
			case 0:
				if hv != 0x11 && hv != 0x22 {
					return errUnsupportedSubsamplingRatio
				}
			case 1, 2:
				if hv != 0x11 {
					return errUnsupportedSubsamplingRatio
				}
			case 3:
				if d.comp[0].h != h || d.comp[0].v != v {
					return errUnsupportedSubsamplingRatio
				}
			}
		}

		d.comp[i].h = h
		d.comp[i].v = v
	}
	return nil
}

// Specified in section B.2.4.1.
func (d *decoder) processDQT(n int) error {
loop:
	for n > 0 {
		n--
		x, err := d.readByte()
		if err != nil {
			return err
		}
		tq := x & 0x0f
		if tq > maxTq {
			return FormatError("bad Tq value")
		}
		switch x >> 4 {
		default:
			return FormatError("bad Pq value")
		case 0:
			if n < blockSize {
				break loop
			}
			n -= blockSize
			if err := d.readFull(d.tmp[:blockSize]); err != nil {
				return err
			}
			for i := range d.quant[tq] {
				d.quant[tq][i] = int32(d.tmp[i])
			}
		case 1:
			if n < 2*blockSize {
				break loop
			}
			n -= 2 * blockSize
			if err := d.readFull(d.tmp[:2*blockSize]); err != nil {
				return err
			}
			for i := range d.quant[tq] {
				d.quant[tq][i] = int32(d.tmp[2*i])<<8 | int32(d.tmp[2*i+1])
			}
		}
	}
	if n != 0 {
		return FormatError("DQT has wrong length")
	}
	return nil
}

// Specified in section B.2.4.4.
func (d *decoder) processDRI(n int) error {
	if n != 2 {
		return FormatError("DRI has wrong length")
	}
	if err := d.readFull(d.tmp[:2]); err != nil {
		return err
	}
	d.ri = int(d.tmp[0])<<8 + int(d.tmp[1])
	return nil
}

func (d *decoder) processApp0Marker(n int) error {
	if n < 5 {
		return d.ignore(n)
	}
	if err := d.readFull(d.tmp[:5]); err != nil {
		return err
	}
	n -= 5

	d.jfif = d.tmp[0] == 'J' && d.tmp[1] == 'F' && d.tmp[2] == 'I' && d.tmp[3] == 'F' && d.tmp[4] == '\x00'

	if n > 0 {
		return d.ignore(n)
	}
	return nil
}

func (d *decoder) processApp14Marker(n int) error {
	if n < 12 {
		return d.ignore(n)
	}
	if err := d.readFull(d.tmp[:12]); err != nil {
		return err
	}
	n -= 12

	if d.tmp[0] == 'A' && d.tmp[1] == 'd' && d.tmp[2] == 'o' && d.tmp[3] == 'b' && d.tmp[4] == 'e' {
		d.adobeTransformValid = true
		d.adobeTransform = d.tmp[11]
	}

	if n > 0 {
		return d.ignore(n)
	}
	return nil
}

// decode reads a JPEG image from r and returns it as an image.Image.
func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) {
	d.r = r

	// Check for the Start Of Image marker.
	if err := d.readFull(d.tmp[:2]); err != nil {
		return nil, err
	}
	if d.tmp[0] != 0xff || d.tmp[1] != soiMarker {
		return nil, FormatError("missing SOI marker")
	}

	// Process the remaining segments until the End Of Image marker.
	for {
		err := d.readFull(d.tmp[:2])
		if err != nil {
			return nil, err
		}
		for d.tmp[0] != 0xff {
			// Strictly speaking, this is a format error. However, libjpeg is
			// liberal in what it accepts. As of version 9, next_marker in
			// jdmarker.c treats this as a warning (JWRN_EXTRANEOUS_DATA) and
			// continues to decode the stream. Even before next_marker sees
			// extraneous data, jpeg_fill_bit_buffer in jdhuff.c reads as many
			// bytes as it can, possibly past the end of a scan's data. It
			// effectively puts back any markers that it overscanned (e.g. an
			// "\xff\xd9" EOI marker), but it does not put back non-marker data,
			// and thus it can silently ignore a small number of extraneous
			// non-marker bytes before next_marker has a chance to see them (and
			// print a warning).
			//
			// We are therefore also liberal in what we accept. Extraneous data
			// is silently ignored.
			//
			// This is similar to, but not exactly the same as, the restart
			// mechanism within a scan (the RST[0-7] markers).
			//
			// Note that extraneous 0xff bytes in e.g. SOS data are escaped as
			// "\xff\x00", and so are detected a little further down below.
			d.tmp[0] = d.tmp[1]
			d.tmp[1], err = d.readByte()
			if err != nil {
				return nil, err
			}
		}
		marker := d.tmp[1]
		if marker == 0 {
			// Treat "\xff\x00" as extraneous data.
			continue
		}
		for marker == 0xff {
			// Section B.1.1.2 says, "Any marker may optionally be preceded by any
			// number of fill bytes, which are bytes assigned code X'FF'".
			marker, err = d.readByte()
			if err != nil {
				return nil, err
			}
		}
		if marker == eoiMarker { // End Of Image.
			break
		}
		if rst0Marker <= marker && marker <= rst7Marker {
			// Figures B.2 and B.16 of the specification suggest that restart markers should
			// only occur between Entropy Coded Segments and not after the final ECS.
			// However, some encoders may generate incorrect JPEGs with a final restart
			// marker. That restart marker will be seen here instead of inside the processSOS
			// method, and is ignored as a harmless error. Restart markers have no extra data,
			// so we check for this before we read the 16-bit length of the segment.
			continue
		}

		// Read the 16-bit length of the segment. The value includes the 2 bytes for the
		// length itself, so we subtract 2 to get the number of remaining bytes.
		if err = d.readFull(d.tmp[:2]); err != nil {
			return nil, err
		}
		n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2
		if n < 0 {
			return nil, FormatError("short segment length")
		}

		switch marker {
		case sof0Marker, sof1Marker, sof2Marker:
			d.progressive = marker == sof2Marker
			err = d.processSOF(n)
			if configOnly && d.jfif {
				return nil, err
			}
		case dhtMarker:
			if configOnly {
				err = d.ignore(n)
			} else {
				err = d.processDHT(n)
			}
		case dqtMarker:
			if configOnly {
				err = d.ignore(n)
			} else {
				err = d.processDQT(n)
			}
		case sosMarker:
			if configOnly {
				return nil, nil
			}
			err = d.processSOS(n)
		case driMarker:
			if configOnly {
				err = d.ignore(n)
			} else {
				err = d.processDRI(n)
			}
		case app0Marker:
			err = d.processApp0Marker(n)
		case app14Marker:
			err = d.processApp14Marker(n)
		default:
			if app0Marker <= marker && marker <= app15Marker || marker == comMarker {
				err = d.ignore(n)
			} else if marker < 0xc0 { // See Table B.1 "Marker code assignments".
				err = FormatError("unknown marker")
			} else {
				err = UnsupportedError("unknown marker")
			}
		}
		if err != nil {
			return nil, err
		}
	}
	if d.img1 != nil {
		return d.img1, nil
	}
	if d.img3 != nil {
		if d.blackPix != nil {
			return d.applyBlack()
		} else if d.isRGB() {
			return d.convertToRGB()
		}
		return d.img3, nil
	}
	return nil, FormatError("missing SOS marker")
}

// applyBlack combines d.img3 and d.blackPix into a CMYK image. The formula
// used depends on whether the JPEG image is stored as CMYK or YCbCrK,
// indicated by the APP14 (Adobe) metadata.
//
// Adobe CMYK JPEG images are inverted, where 255 means no ink instead of full
// ink, so we apply "v = 255 - v" at various points. Note that a double
// inversion is a no-op, so inversions might be implicit in the code below.
func (d *decoder) applyBlack() (image.Image, error) {
	if !d.adobeTransformValid {
		return nil, UnsupportedError("unknown color model: 4-component JPEG doesn't have Adobe APP14 metadata")
	}

	// If the 4-component JPEG image isn't explicitly marked as "Unknown (RGB
	// or CMYK)" as per
	// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
	// we assume that it is YCbCrK. This matches libjpeg's jdapimin.c.
	if d.adobeTransform != adobeTransformUnknown {
		// Convert the YCbCr part of the YCbCrK to RGB, invert the RGB to get
		// CMY, and patch in the original K. The RGB to CMY inversion cancels
		// out the 'Adobe inversion' described in the applyBlack doc comment
		// above, so in practice, only the fourth channel (black) is inverted.
		bounds := d.img3.Bounds()
		img := image.NewRGBA(bounds)
		imageutil.DrawYCbCr(img, bounds, d.img3, bounds.Min)
		for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 {
			for i, x := iBase+3, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 {
				img.Pix[i] = 255 - d.blackPix[(y-bounds.Min.Y)*d.blackStride+(x-bounds.Min.X)]
			}
		}
		return &image.CMYK{
			Pix:    img.Pix,
			Stride: img.Stride,
			Rect:   img.Rect,
		}, nil
	}

	// The first three channels (cyan, magenta, yellow) of the CMYK
	// were decoded into d.img3, but each channel was decoded into a separate
	// []byte slice, and some channels may be subsampled. We interleave the
	// separate channels into an image.CMYK's single []byte slice containing 4
	// contiguous bytes per pixel.
	bounds := d.img3.Bounds()
	img := image.NewCMYK(bounds)

	translations := [4]struct {
		src    []byte
		stride int
	}{
		{d.img3.Y, d.img3.YStride},
		{d.img3.Cb, d.img3.CStride},
		{d.img3.Cr, d.img3.CStride},
		{d.blackPix, d.blackStride},
	}
	for t, translation := range translations {
		subsample := d.comp[t].h != d.comp[0].h || d.comp[t].v != d.comp[0].v
		for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 {
			sy := y - bounds.Min.Y
			if subsample {
				sy /= 2
			}
			for i, x := iBase+t, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 {
				sx := x - bounds.Min.X
				if subsample {
					sx /= 2
				}
				img.Pix[i] = 255 - translation.src[sy*translation.stride+sx]
			}
		}
	}
	return img, nil
}

func (d *decoder) isRGB() bool {
	if d.jfif {
		return false
	}
	if d.adobeTransformValid && d.adobeTransform == adobeTransformUnknown {
		// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
		// says that 0 means Unknown (and in practice RGB) and 1 means YCbCr.
		return true
	}
	return d.comp[0].c == 'R' && d.comp[1].c == 'G' && d.comp[2].c == 'B'
}

func (d *decoder) convertToRGB() (image.Image, error) {
	cScale := d.comp[0].h / d.comp[1].h
	bounds := d.img3.Bounds()
	img := image.NewRGBA(bounds)
	for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
		po := img.PixOffset(bounds.Min.X, y)
		yo := d.img3.YOffset(bounds.Min.X, y)
		co := d.img3.COffset(bounds.Min.X, y)
		for i, iMax := 0, bounds.Max.X-bounds.Min.X; i < iMax; i++ {
			img.Pix[po+4*i+0] = d.img3.Y[yo+i]
			img.Pix[po+4*i+1] = d.img3.Cb[co+i/cScale]
			img.Pix[po+4*i+2] = d.img3.Cr[co+i/cScale]
			img.Pix[po+4*i+3] = 255
		}
	}
	return img, nil
}

// Decode reads a JPEG image from r and returns it as an image.Image.
func Decode(r io.Reader) (image.Image, error) {
	var d decoder
	return d.decode(r, false)
}

// DecodeConfig returns the color model and dimensions of a JPEG image without
// decoding the entire image.
func DecodeConfig(r io.Reader) (image.Config, error) {
	var d decoder
	if _, err := d.decode(r, true); err != nil {
		return image.Config{}, err
	}
	switch d.nComp {
	case 1:
		return image.Config{
			ColorModel: color.GrayModel,
			Width:      d.width,
			Height:     d.height,
		}, nil
	case 3:
		cm := color.YCbCrModel
		if d.isRGB() {
			cm = color.RGBAModel
		}
		return image.Config{
			ColorModel: cm,
			Width:      d.width,
			Height:     d.height,
		}, nil
	case 4:
		return image.Config{
			ColorModel: color.CMYKModel,
			Width:      d.width,
			Height:     d.height,
		}, nil
	}
	return image.Config{}, FormatError("missing SOF marker")
}

func init() {
	image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig)
}