1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
open Core_kernel
open Bap.Std
open Log_utils
let name = "CWE476"
let version = "0.3"
(* TODO: This check is based on Mem_region, which does not support partial access yet.
Thus partially written tainted values may be marked as error and thus the taint is falsely forgotten. *)
(** Each taint is denoted by the Tid of the basic block where it originated from.
Each value can be tainted by different sources at the same time. *)
module Taint = Tid.Set
(** The state contains taint information for all registers and stack variables. *)
module State = struct
type t = {
register: Taint.t Var.Map.t;
stack: Taint.t Mem_region.t;
} [@@deriving bin_io, compare, sexp]
(** Get an empty state without tainted values. *)
let empty : t =
{ register = Var.Map.empty;
stack = Mem_region.empty () }
(** equality function for states *)
let equal (state1: t) (state2: t) : Bool.t =
let reg_equal = Var.Map.equal Taint.equal state1.register state2.register in
let stack_equal = Mem_region.equal state1.stack state2.stack ~data_equal:Taint.equal in
reg_equal && stack_equal
(** set the taint of a register *)
let set_register (state: t) (register: Var.t) (taint: Taint.t) : t =
{ state with register = Var.Map.set state.register ~key:register ~data: taint}
(** return the taint of a register *)
let find_register (state: t) (register: Var.t) : Taint.t Option.t =
Var.Map.find state.register register
(** only remove the register var from the list of tainted registers *)
let remove_register (state: t) (register: Var.t) : t =
{ state with register = Var.Map.remove state.register register }
(** set the taint of a stack element *)
let set_stack (state: t) ~(pos: Bitvector.t) ~(size: Bitvector.t) (taint: Taint.t) : t =
{ state with stack = Mem_region.add state.stack taint ~pos ~size }
(** get the taint from the stack
TODO: Mem_region is currently unsound for only partially loaded values, which might lead to errors here. *)
let find_stack (state: t) ~(pos: Bitvector.t) : Taint.t Option.t =
match Mem_region.get state.stack pos with
| Some(Ok(taint, _size)) -> Some(taint)
| _ -> None
(** remove a stack element *)
let remove_stack (state: t) ~(pos: Bitvector.t) ~(size: Bitvector.t) : t =
{ state with stack = Mem_region.remove state.stack ~pos ~size}
(** remove all Tids contained in the taint from all taints in the state *)
let remove_taint (state: t) (taint_to_remove: Taint.t) : t =
let register_list = Var.Map.to_alist state.register in
let cleaned_register = List.fold register_list ~init:Var.Map.empty ~f:(fun cleaned_register (register, taint) ->
let cleaned_taint = Tid.Set.diff taint taint_to_remove in
if Tid.Set.is_empty cleaned_taint then
cleaned_register
else
Var.Map.set cleaned_register ~key:register ~data:cleaned_taint
) in
let cleaned_stack = Mem_region.map_data state.stack ~f:(fun taint ->
Tid.Set.diff taint taint_to_remove
) in
{ register = cleaned_register;
stack = cleaned_stack; }
(** The union of two states is the union of all taints *)
let union (state1: t) (state2: t) : t =
let register = Var.Map.merge state1.register state2.register ~f:(fun ~key:_ values->
match values with
| `Both (taint1, taint2) -> Some (Taint.union taint1 taint2)
| `Left taint | `Right taint -> Some taint
) in
let stack = Mem_region.merge state1.stack state2.stack ~data_merge:(fun taint1 taint2 ->
Some( Ok(Taint.union taint1 taint2) )
) in
{ register = register;
stack = stack; }
(** remove virtual register from the state (useful at the end of a block) *)
let remove_virtual_register (state: t) : t =
{ state with register = Var.Map.filter_keys state.register ~f:(fun var -> Var.is_physical var) }
end
(** The stack info contains all necessary information to access stack variables. *)
module StackInfo = struct
type t = {
type_info: Type_inference.TypeInfo.t;
sub_tid: Tid.t;
project: Project.t;
strict_mem_policy: Bool.t;
}
(** If the expression denotes an address on the stack, return the address. *)
let get_address (stack_info: t) (expression: Exp.t) : Bitvector.t Option.t =
Type_inference.TypeInfo.compute_stack_offset stack_info.type_info expression ~sub_tid:stack_info.sub_tid ~project:stack_info.project
(** Assemble a StackInfo.t object. *)
let assemble (pointer_info_map: Type_inference.TypeInfo.t Tid.Map.t) (term_tid: Tid.t) ~(sub_tid: Tid.t) ~(project: Project.t) ~(strict_mem_policy: Bool.t) : t =
{ type_info = Tid.Map.find_exn pointer_info_map term_tid;
sub_tid = sub_tid;
project = project;
strict_mem_policy = strict_mem_policy; }
(**/**)
(* assemble a mock StackInfo for unit tests *)
let assemble_mock_info (mock_tid: Tid.t) (project: Project.t) : t =
{ type_info = { Type_inference.TypeInfo.stack = Mem_region.empty (); Type_inference.TypeInfo.reg = Var.Map.empty};
sub_tid = mock_tid;
project = project;
strict_mem_policy = false; }
(**/**)
end
(** append taint to the list of already found cwe_hits *)
let append_to_hits (cwe_hits:Taint.t ref) (taint: Taint.t) : unit =
cwe_hits := Taint.union !cwe_hits taint
(** Check whether an expression contains a tainted value.
Memory accesses through tainted values are added to cwe_hits, but the Tids are not removed from the state. *)
let rec contains_taint (exp: Exp.t) (state: State.t) ~(cwe_hits: Taint.t ref) ~(stack: StackInfo.t) : Taint.t =
match exp with
| Bil.Load(_mem, addr, _endian, _size)->
begin
let access_taint = contains_taint addr state ~cwe_hits ~stack in
let () = if Taint.is_empty access_taint = false then append_to_hits cwe_hits access_taint in
match StackInfo.get_address stack addr with
| Some(stack_offset) -> Option.value (State.find_stack state ~pos:stack_offset) ~default:Taint.empty
| None -> Taint.empty
end
| Bil.Store(_mem, addr, val_expression, _,_) ->
begin
let access_taint = contains_taint addr state ~cwe_hits ~stack in
let value_taint = contains_taint val_expression state ~cwe_hits ~stack in
let () = if Taint.is_empty access_taint = false then append_to_hits cwe_hits access_taint in
match StackInfo.get_address stack addr with
| Some(_) -> Taint.empty
| None ->
let () = if stack.strict_mem_policy && (Taint.is_empty value_taint = false) then append_to_hits cwe_hits value_taint in
Taint.empty
end
| Bil.BinOp(Bil.XOR, Bil.Var(var1), Bil.Var(var2)) when var1 = var2 -> Taint.empty (* standard assembly shortcut for setting a register to NULL *)
| Bil.BinOp(_, exp1, exp2) -> Taint.union (contains_taint exp1 state ~cwe_hits ~stack) (contains_taint exp2 state ~cwe_hits ~stack)
| Bil.UnOp(_, exp) -> contains_taint exp state ~cwe_hits ~stack
| Bil.Var(var) -> Option.value (State.find_register state var) ~default:Taint.empty
| Bil.Int(_) -> Taint.empty
| Bil.Cast(_, _, exp) -> contains_taint exp state ~cwe_hits ~stack
| Bil.Let(var, exp1, exp2) ->
Taint.union_list (
(contains_taint exp1 state ~cwe_hits ~stack)
:: (contains_taint exp2 state ~cwe_hits ~stack)
:: (contains_taint (Bil.var var) state ~cwe_hits ~stack) :: [])
| Bil.Unknown(_) -> Taint.empty
| Bil.Ite(if_, then_, else_) ->
Taint.union_list (
(contains_taint if_ state ~cwe_hits ~stack)
:: (contains_taint then_ state ~cwe_hits ~stack)
:: (contains_taint else_ state ~cwe_hits ~stack) :: [])
| Bil.Extract(_,_, exp) -> contains_taint exp state ~cwe_hits ~stack
| Bil.Concat(exp1, exp2) -> Taint.union (contains_taint exp1 state ~cwe_hits ~stack) (contains_taint exp2 state ~cwe_hits ~stack)
(** Parse an expression for memory accesses through tainted values and taint contained in the value itself.
All memory accesses except for loading/storing values from/to the stack get flagged as cwe_hits.
Returns the taint of the expression and the new state, with the Tids of new cwe_hits removed from both. *)
let parse_taint_of_exp (exp: Exp.t) (state: State.t) ~(cwe_hits: Taint.t ref) ~(stack: StackInfo.t) : Taint.t * State.t =
let hits_to_clean : Taint.t ref = ref Taint.empty in
let unchecked_taint = contains_taint exp state ~cwe_hits:hits_to_clean ~stack in
let () = append_to_hits cwe_hits !hits_to_clean in
let state = State.remove_taint state !hits_to_clean in
let unchecked_taint = Taint.diff unchecked_taint !hits_to_clean in
(unchecked_taint, state)
(** If an formerly unchecked return value was checked then remove all registers pointing
to the source of this return value from state. *)
let checks_value (exp: Exp.t) (state: State.t) ~(cwe_hits: Taint.t ref) ~(stack: StackInfo.t) : State.t =
match exp with
| Bil.Ite(if_, _then_, _else_) -> begin
let (taint_to_remove, state) = parse_taint_of_exp if_ state ~cwe_hits ~stack in
if Taint.is_empty taint_to_remove = false then
State.remove_taint state taint_to_remove
else
state
end
| _ -> state
(** flags any access (not just memory access) from an unchecked source as a cwe_hit. *)
let flag_any_access (exp: Exp.t) (state: State.t) ~(cwe_hits: Taint.t ref) ~(stack: StackInfo.t) : State.t=
let (taint_to_flag, state) = parse_taint_of_exp exp state ~cwe_hits ~stack in
let () = append_to_hits cwe_hits taint_to_flag in
State.remove_taint state taint_to_flag
(** flag all unchecked registers and stack variables that may be used as return values.
That means stack variables above the return pointer get flagged,
but variables below the return pointer are treated as local variables and do not get flagged.
Return empty state *)
let flag_unchecked_return_values (state: State.t) ~(cwe_hits: Taint.t ref) ~(project: Project.t) : State.t =
let taint_to_flag = Var.Map.fold state.register ~init:Taint.empty ~f:(fun ~key ~data taint_accum ->
if Cconv.is_return_register key project then
Taint.union taint_accum data
else
taint_accum
) in
let taint_to_flag = List.fold (Mem_region.list_data_pos state.stack) ~init:taint_to_flag ~f:(fun taint_accum (position_unsigned, taint_value) ->
let position = Bitvector.to_int_exn (Bitvector.signed position_unsigned) in
if position >= 0 then
Taint.union taint_accum taint_value
else
taint_accum
) in
let () = append_to_hits cwe_hits taint_to_flag in
State.empty
(** flag all register taints as cwe_hits, but not taints that are only contained in stack variables *)
let flag_register_taints (state: State.t) ~(cwe_hits: Taint.t ref) : State.t =
let taint_to_flag = List.fold (Var.Map.data state.register) ~init: Taint.empty ~f:(fun taint_accum register_taint ->
Taint.union taint_accum register_taint
) in
let () = append_to_hits cwe_hits taint_to_flag in
State.remove_taint state taint_to_flag
(** Flag all possible parameter register as cwe_hits. These registers may be input values to an extern function call.
This can lead to false positives if a function does not use all of these registers for argument passing. *)
let flag_parameter_register (state: State.t) ~(cwe_hits: Taint.t ref) ~(project: Project.t) : State.t =
let taint_to_flag = Var.Map.fold state.register ~init:Taint.empty ~f:(fun ~key ~data taint_accum ->
if Cconv.is_parameter_register key project then
Taint.union taint_accum data
else
taint_accum
) in
let () = append_to_hits cwe_hits taint_to_flag in
State.remove_taint state taint_to_flag
(** Remove the taint of non-callee-saved register (without flagging them).
For taints in parameter register we assume that they are checked by the callee, thus we also remove the corresponding Tids from the state. *)
let untaint_non_callee_saved_register (state: State.t) ~(project: Project.t) : State.t =
let taint_to_remove = Var.Map.fold state.register ~init:Taint.empty ~f:(fun ~key ~data taint_accum ->
if Cconv.is_callee_saved key project then
taint_accum
else
Taint.union taint_accum data
) in
let state = State.remove_taint state taint_to_remove in
Var.Map.fold state.register ~init:state ~f:(fun ~key ~data:_ state ->
if Cconv.is_callee_saved key project then
state
else
State.remove_register state key
)
(** If the expression is a store onto a stack variable, write the corresponding taint to the stack. *)
let update_stack_on_stores (exp: Exp.t) (state: State.t) ~(stack: StackInfo.t) : State.t =
let pointer_size = Symbol_utils.arch_pointer_size_in_bytes stack.project in
match exp with
| Bil.Store(_mem, address_exp, value, _endian, size) -> begin
let value_taint = contains_taint value state ~cwe_hits:(ref Taint.empty) ~stack in
match StackInfo.get_address stack address_exp with
| Some(address) ->
if Taint.is_empty value_taint then
State.remove_stack state ~pos:address ~size:(Bitvector.of_int (Size.in_bytes size) ~width:pointer_size)
else
State.set_stack state value_taint ~pos:address ~size:(Bitvector.of_int (Size.in_bytes size) ~width:pointer_size)
| None -> state
end
| _ -> state
(** Updates the state depending on the def. If memory is accessed using an unchecked return value,
then the access is added to the list of cwe_hits. *)
let update_state_def (def: Def.t) (state: State.t) ~(cwe_hits: Taint.t ref) ~(stack: StackInfo.t) : State.t =
let (lhs, rhs) = (Def.lhs def, Def.rhs def) in
let state = checks_value rhs state ~cwe_hits ~stack in
let (rhs_taint, state) = parse_taint_of_exp rhs state ~cwe_hits ~stack in
let state =
if Taint.is_empty rhs_taint then
State.remove_register state lhs
else
State.set_register state lhs rhs_taint in
update_stack_on_stores rhs state ~stack
(** Taint the return registers of a function as unchecked return values. *)
let taint_return_registers (func_tid: Tid.t) (state: State.t) ~(project: Project.t) ~(block: Blk.t) : State.t =
let func = Term.find_exn sub_t (Project.program project) func_tid in
let arguments = Term.enum arg_t func in
(* Every return register is tainted as unchecked return value. *)
Seq.fold arguments ~init:state ~f:(fun state arg ->
match Bap.Std.Arg.intent arg with
| None | Some(In) -> state
| Some(Out) | Some(Both) ->
let variable = match Bap.Std.Arg.rhs arg with
| Bil.Var(var) -> var
| _ -> failwith "[CWE476] Return register wasn't a register." in
State.set_register state variable (Taint.add Taint.empty (Term.tid block))
)
(** Updates the state depending on the jump. On a jump to a function from the function list
taint all return registers as unchecked return values. *)
let update_state_jmp
(jmp: Jmp.t)
(state: State.t)
~(cwe_hits: Taint.t ref)
~(malloc_like_functions: String.t List.t)
~(extern_functions: String.Set.t)
~(stack: StackInfo.t)
~(block: Blk.t)
~(strict_call_policy: Bool.t) : State.t =
(* first check the guard condition for unchecked access. Any normal access clears the access from being unchecked *)
let condition_exp = Jmp.cond jmp in
let state = begin
let (condition_taint, state) = parse_taint_of_exp condition_exp state ~cwe_hits ~stack in
if Taint.is_empty condition_taint then
state
else
State.remove_taint state condition_taint
end in
match Jmp.kind jmp with
| Goto(Indirect(exp)) -> flag_any_access exp state ~cwe_hits ~stack
| Goto(Direct(_)) -> state
| Ret(_) -> if strict_call_policy then
flag_unchecked_return_values state ~cwe_hits ~project:stack.project
else
state
| Int(_, _) -> flag_register_taints state ~cwe_hits
| Call(call) ->
(* flag tainted values in the call and return expressions of indirect calls *)
let state = match Call.return call with
| Some(Indirect(exp)) -> flag_any_access exp state ~cwe_hits ~stack
| _ -> state in
let state = begin match Call.target call with
| Indirect(exp) -> flag_any_access exp state ~cwe_hits ~stack
| _ -> state end in
(* flag tainted values in the parameter registers (if strict_call_policy is set to true)*)
let state = match (Call.target call, strict_call_policy) with
| (Indirect(_), false)
| (Direct(_), false) -> state
| (Indirect(_), true) -> flag_parameter_register state ~cwe_hits ~project:stack.project (* TODO: indirect calls are handled as extern calls right now. Change that *)
| (Direct(tid), true) ->
let sub = Term.find_exn sub_t (Project.program stack.project) tid in
if Set.mem extern_functions (Sub.name sub) then
flag_parameter_register state ~cwe_hits ~project:stack.project
else (* flag all registers for intern calls, as these do not necessarily adhere to any calling convention *)
flag_register_taints state ~cwe_hits
in
(* remove the taint of non-callee-saved registers *)
let state = match Call.target call with
| Direct(tid) ->
let sub = Term.find_exn sub_t (Project.program stack.project) tid in
if Set.mem extern_functions (Sub.name sub) then
untaint_non_callee_saved_register state ~project:stack.project
else (* we untaint all registers for internal function calls, as these do not necessarily adhere to any calling convention *)
{ state with register = Var.Map.empty }
| Indirect(_) -> (* we treat all indirect calls as extern function calls, since we cannot handle indirect calls properly yet *)
untaint_non_callee_saved_register state ~project:stack.project
in
(* introduce new taint for the return values of malloc_like_functions *)
match Call.target call with
| Indirect(_) -> state
| Direct(tid) ->
if List.exists malloc_like_functions ~f:(fun elem -> String.(=) elem (Tid.name tid)) then
taint_return_registers tid state ~project:stack.project ~block
else
state
(** updates a block analysis.
The strict call policy decides the behaviour on call and return instructions:
strict: unchecked values in registers get flagged as cwe_hits
non-strict: unchecked values in registers get marked as checked. It is assumed that the callee checks these values. *)
let update_block_analysis
(block: Blk.t)
(state: State.t)
~(cwe_hits: Taint.t ref)
~(malloc_like_functions: String.t List.t)
~(extern_functions: String.Set.t)
~(sub_tid: Tid.t)
~(project: Project.t)
~(strict_call_policy: Bool.t)
~(strict_mem_policy: Bool.t) : State.t =
let elements = Blk.elts block in
let type_info_map = Type_inference.get_type_info_of_block ~project block ~sub_tid in
let state = Seq.fold elements ~init:state ~f:(fun state element ->
match element with
| `Def def ->
let stack = StackInfo.assemble type_info_map (Term.tid def) ~sub_tid ~project ~strict_mem_policy in
update_state_def def state ~cwe_hits ~stack
| `Phi _phi -> state (* We ignore phi terms for this analysis. *)
| `Jmp jmp ->
let stack = StackInfo.assemble type_info_map (Term.tid jmp) ~sub_tid ~project ~strict_mem_policy in
update_state_jmp jmp state ~cwe_hits ~malloc_like_functions ~extern_functions ~stack ~block ~strict_call_policy
) in
State.remove_virtual_register state (* virtual registers should not be accessed outside of the block where they are defined. *)
(** print a cwe_hit to the log *)
let print_hit (tid: Tid.t) ~(sub: Sub.t) ~(malloc_like_functions: String.t List.t) ~(tid_map: Word.t Tid.Map.t) : unit =
let block = Option.value_exn (Term.find blk_t sub tid) in
let jmps = Term.enum jmp_t block in
let _ = Seq.find_exn jmps ~f:(fun jmp ->
match Jmp.kind jmp with
| Call(call) -> begin
match Call.target call with
| Direct(call_tid) -> Option.is_some (List.find malloc_like_functions ~f:(fun fn_name ->
if fn_name = (Tid.name call_tid) then
begin
let address = Address_translation.translate_tid_to_assembler_address_string (Term.tid jmp) tid_map in
let tids = [Address_translation.tid_to_string (Term.tid jmp)] in
let description = sprintf
"(NULL Pointer Dereference) There is no check if the return value is NULL at %s (%s)."
address
fn_name in
let cwe_warning = cwe_warning_factory
name
version
~addresses:[address]
~tids:tids
~symbols:[fn_name]
description in
collect_cwe_warning cwe_warning;
true
end else
false
))
| _ -> false
end
| _ -> false
) in ()
let check_cwe (_prog: Program.t) (project: Project.t) (tid_map: Word.t Tid.Map.t) (symbol_names: String.t List.t List.t) (parameters: String.t List.t) =
let symbols = match symbol_names with
| hd :: _ -> hd
| _ -> failwith "[CWE476] symbol_names not as expected" in
let (strict_call_policy_string, strict_mem_policy_string, max_steps_string) = match parameters with
| par1 :: par2 :: par3 :: _ -> (par1, par2, par3)
| _ -> failwith "[CWE476] parameters not as expected" in
let strict_call_policy = match String.split strict_call_policy_string ~on:'=' with
| "strict_call_policy" :: policy :: [] -> bool_of_string policy
| _ -> failwith "[CWE476] parameters not as expected" in
let strict_mem_policy = match String.split strict_mem_policy_string ~on:'=' with
| "strict_memory_policy" :: policy :: [] -> bool_of_string policy
| _ -> failwith "[CWE476] parameters not as expected" in
let max_steps = match String.split max_steps_string ~on:'=' with
| "max_steps" :: num :: [] -> int_of_string num
| _ -> failwith "[CWE476] parameters not as expected" in
let malloc_like_functions = List.map symbols ~f:(fun symb -> "@" ^ symb) in
let extern_functions = Symbol_utils.parse_dyn_syms project in
(* run the pointer inference analysis. TODO: This should be done somewhere else as this analysis will be needed in more than one check! *)
let project = Type_inference.compute_pointer_register project in
let subfunctions = Term.enum sub_t (Project.program project) in
Seq.iter subfunctions ~f:(fun subfn ->
let cfg = Sub.to_cfg subfn in
let cwe_hits = ref Taint.empty in
let empty = Map.empty (module Graphs.Ir.Node) in
let init = Graphlib.Std.Solution.create empty State.empty in
let equal = State.equal in
let merge = State.union in
let f = (fun node state ->
let block = Graphs.Ir.Node.label node in
update_block_analysis block state ~cwe_hits ~malloc_like_functions ~extern_functions ~sub_tid:(Term.tid subfn) ~project ~strict_call_policy ~strict_mem_policy
) in
let _ = Graphlib.Std.Graphlib.fixpoint (module Graphs.Ir) cfg ~steps:max_steps ~rev:false ~init:init ~equal:equal ~merge:merge ~f:f in
Tid.Set.iter (!cwe_hits) ~f:(fun hit -> print_hit hit ~sub:subfn ~malloc_like_functions ~tid_map)
)
(**/**)
(* Functions made public for unit tests *)
module Private = struct
module StackInfo = StackInfo
module Taint = Taint
module State = State
let flag_unchecked_return_values = flag_unchecked_return_values
let flag_register_taints = flag_register_taints
let flag_parameter_register = flag_parameter_register
let untaint_non_callee_saved_register = untaint_non_callee_saved_register
end