term.rs 25.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
use super::{ByteSize, CastOpType, Expression, Variable};
use crate::prelude::*;
use crate::utils::log::LogMessage;
use std::collections::HashSet;

pub mod builder;

/// A term identifier consisting of an ID string (which is required to be unique)
/// and an address to indicate where the term is located.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone, PartialOrd, Ord)]
pub struct Tid {
    /// The unique ID of the term.
    id: String,
    /// The address where the term is located.
    pub address: String,
}

impl Tid {
    /// Generate a new term identifier with the given ID string
    /// and with unknown address.
    pub fn new<T: ToString>(val: T) -> Tid {
        Tid {
            id: val.to_string(),
            address: "UNKNOWN".to_string(),
        }
    }

    /// Add a suffix to the ID string and return the new `Tid`
    pub fn with_id_suffix(self, suffix: &str) -> Self {
        Tid {
            id: self.id + suffix,
            address: self.address,
        }
    }
}

impl std::fmt::Display for Tid {
    fn fmt(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(formatter, "{}", self.id)
    }
}

/// A term is an object inside a binary with an address and an unique ID (both contained in the `tid`).
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub struct Term<T> {
    /// The term identifier, which also contains the address of the term
    pub tid: Tid,
    /// The object
    pub term: T,
}

/// A side-effectful operation.
/// Can be a register assignment or a memory load/store operation.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub enum Def {
    /// A memory load into the register given by `var`.
    ///
    /// The size of `var` also determines the number of bytes read from memory.
    /// The size of `address` is required to match the pointer size of the corresponding CPU architecture.
    Load { var: Variable, address: Expression },
    /// A memory store operation.
    ///
    /// The size of `value` determines the number of bytes written.
    /// The size of `address` is required to match the pointer size of the corresponding CPU architecture.
    Store {
        address: Expression,
        value: Expression,
    },
    /// A register assignment, assigning the result of the expression `value` to the register `var`.
    Assign { var: Variable, value: Expression },
}

impl Term<Def> {
    /// This function checks whether the instruction
    /// is a zero extension of the overwritten sub register of the previous instruction.
    /// If so, returns its TID
    pub fn check_for_zero_extension(
        &self,
        output_name: String,
        output_sub_register: String,
    ) -> Option<Tid> {
        match &self.term {
            Def::Assign { var, value } if output_name == var.name => match value {
                Expression::Cast { op, arg, .. } => {
                    let argument: &Expression = arg;
                    match op {
                        CastOpType::IntZExt => match argument {
                            Expression::Var(var) if var.name == output_sub_register => {
                                Some(self.tid.clone())
                            }
                            _ => None,
                        },
                        _ => None,
                    }
                }
                _ => None,
            },
            _ => None,
        }
    }
}

/// A `Jmp` instruction affects the control flow of a program, i.e. it may change the instruction pointer.
/// With the exception of `CallOther`, it has no other side effects.
///
/// `Jmp` instructions carry some semantic information with it, like whether a jump is intra- or interprocedural.
/// Note that this semantic information may not always be correct.
///
/// The targets (and return targets) of jumps are, if known, either basic blocks (`Blk`) or subroutines (`Sub`)
/// depending of the type of the jump.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub enum Jmp {
    /// A direct intraprocedural jump to the targeted `Blk` term identifier.
    Branch(Tid),
    /// An indirect intraprocedural jump to the address that the given expression evaluates to.
    BranchInd(Expression),
    /// A direct intraprocedural jump that is only taken if the condition evaluates to true (i.e. not zero).
    CBranch { target: Tid, condition: Expression },
    /// A direct interprocedural jump representing a subroutine call.
    ///
    /// Note that this is syntactically equivalent to a `Jmp::Branch`.
    /// If the `return_` is `None`, then the called function does not return to its caller.
    Call { target: Tid, return_: Option<Tid> },
    /// An indirect interprocedural jump to the address the `target` expression evaluates to
    /// and representing a subroutine call.
    ///
    /// Note that this is syntactically equivalent to a `Jmp::BranchInd`.
    /// If the `return_` is `None`, then the called function is believed to not return to its caller.
    CallInd {
        target: Expression,
        return_: Option<Tid>,
    },
    /// A indirect interprocedural jump indicating a return from a subroutine.
    ///
    /// Note that this is syntactically equivalent to a `Jmp::BranchInd`.
    Return(Expression),
    /// This instruction is used for all side effects that are not representable by other instructions
    /// or not supported by the disassembler.
    ///
    /// E.g. syscalls and other interrupts are mapped to `CallOther`.
    /// Assembly instructions that the disassembler does not support are also mapped to `CallOther`.
    /// One can use the `description` field to match for and handle known side effects (e.g. syscalls).
    ///
    /// The `return_` field indicates the `Blk` term identifier
    /// where the disassembler assumes that execution will continue after handling of the side effect.
    CallOther {
        description: String,
        return_: Option<Tid>,
    },
}

impl Term<Jmp> {
    /// If the TID of a jump target or return target is not contained in `known_tids`
    /// replace it with a dummy TID and return an error message.
    fn retarget_nonexisting_jump_targets_to_dummy_tid(
        &mut self,
        known_tids: &HashSet<Tid>,
        dummy_sub_tid: &Tid,
        dummy_blk_tid: &Tid,
    ) -> Result<(), LogMessage> {
        use Jmp::*;
        match &mut self.term {
            BranchInd(_) => (),
            Branch(tid) | CBranch { target: tid, .. } if known_tids.get(tid).is_none() => {
                let error_msg = format!("Jump target at {} does not exist", tid.address);
                let error_log = LogMessage::new_error(error_msg).location(self.tid.clone());
                *tid = dummy_blk_tid.clone();
                return Err(error_log);
            }
            Call { target, return_ } if known_tids.get(target).is_none() => {
                let error_msg = format!("Call target at {} does not exist", target.address);
                let error_log = LogMessage::new_error(error_msg).location(self.tid.clone());
                *target = dummy_sub_tid.clone();
                *return_ = None;
                return Err(error_log);
            }
            Call {
                return_: Some(return_tid),
                ..
            }
            | CallInd {
                return_: Some(return_tid),
                ..
            }
            | CallOther {
                return_: Some(return_tid),
                ..
            } if known_tids.get(return_tid).is_none() => {
                let error_msg = format!("Return target at {} does not exist", return_tid.address);
                let error_log = LogMessage::new_error(error_msg).location(self.tid.clone());
                *return_tid = dummy_blk_tid.clone();
                return Err(error_log);
            }
            _ => (),
        }
        Ok(())
    }
}

/// A basic block is a sequence of `Def` instructions followed by up to two `Jmp` instructions.
///
/// The `Def` instructions represent side-effectful operations that are executed in order when the block is entered.
/// `Def` instructions do not affect the control flow of a program.
///
/// The `Jmp` instructions represent control flow affecting operations.
/// There can only be zero, one or two `Jmp`s:
/// - Zero `Jmp`s indicate that the next execution to be executed could not be discerned.
/// This should only happen on disassembler errors or on dead ends in the control flow graph that were deliberately inserted by the user.
/// - If there is exactly one `Jmp`, it is required to be an unconditional jump.
/// - For two jumps, the first one has to be a conditional jump,
/// where the second unconditional jump is only taken if the condition of the first jump evaluates to false.
///
/// Basic blocks are *single entry, single exit*, i.e. a basic block is only entered at the beginning
/// and is only exited by the jump instructions at the end of the block.
/// If a new control flow edge is discovered that would jump to the middle of a basic block,
/// the block structure needs to be updated accordingly.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub struct Blk {
    pub defs: Vec<Term<Def>>,
    pub jmps: Vec<Term<Jmp>>,
}

/// A `Sub` or subroutine represents a function with a given name and a list of basic blocks belonging to it.
///
/// Subroutines are *single-entry*,
/// i.e. calling a subroutine will execute the first block in the list of basic blocks.
/// A subroutine may have multiple exits, which are identified by `Jmp::Return` instructions.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub struct Sub {
    /// The name of the subroutine
    pub name: String,
    /// The basic blocks belonging to the subroutine.
    /// The first block is also the entry point of the subroutine.
    pub blocks: Vec<Term<Blk>>,
}

/// A parameter or return argument of a function.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub enum Arg {
    /// The argument is passed in a register
    Register(Variable),
    /// The argument is passed on the stack.
    /// It is positioned at the given offset (in bytes) relative to the stack pointer on function entry
    /// and has the given size.
    Stack { offset: i64, size: ByteSize },
}

/// An extern symbol represents a funtion that is dynamically linked from another binary.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub struct ExternSymbol {
    pub tid: Tid,
    /// Addresses of possibly multiple locations of the same extern symbol
    pub addresses: Vec<String>,
    /// The name of the extern symbol
    pub name: String,
    /// The calling convention used for the extern symbol if known
    pub calling_convention: Option<String>,
    /// Parameters of an extern symbol.
    /// May be empty if there are no parameters or the parameters are unknown.
    pub parameters: Vec<Arg>,
    /// Return values of an extern symbol.
    /// May be empty if there is no return value or the return values are unknown.
    pub return_values: Vec<Arg>,
    /// If set to `true`, the function is assumed to never return to its caller when called.
    pub no_return: bool,
}

impl ExternSymbol {
    /// If the extern symbol has exactly one return value that is passed in a register,
    /// return the register.
    pub fn get_unique_return_register(&self) -> Result<&Variable, Error> {
        if self.return_values.len() == 1 {
            match self.return_values[0] {
                Arg::Register(ref var) => Ok(var),
                Arg::Stack { .. } => Err(anyhow!("Return value is passed on the stack")),
            }
        } else {
            Err(anyhow!("Wrong number of return values"))
        }
    }

    /// If the extern symbol has exactly one parameter, return the parameter.
    pub fn get_unique_parameter(&self) -> Result<&Arg, Error> {
        if self.parameters.len() == 1 {
            Ok(&self.parameters[0])
        } else {
            Err(anyhow!("Wrong number of parameter values"))
        }
    }

    /// Get the calling convention corresponding to the extern symbol.
    pub fn get_calling_convention<'a>(&self, project: &'a Project) -> &'a CallingConvention {
        let cconv_name: &str = self.calling_convention.as_deref().unwrap_or("default");
        project
            .calling_conventions
            .iter()
            .find(|cconv| cconv.name == cconv_name)
            .unwrap()
    }
}

/// The `Program` structure represents a disassembled binary.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub struct Program {
    /// The known functions contained in the binary
    pub subs: Vec<Term<Sub>>,
    /// Extern symbols linked to the binary by the linker.
    pub extern_symbols: Vec<ExternSymbol>,
    /// Entry points into to binary,
    /// i.e. the term identifiers of functions that may be called from outside of the binary.
    pub entry_points: Vec<Tid>,
    /// An offset that has been added to all addresses in the program compared to the addresses
    /// as specified in the binary file.
    ///
    /// In certain cases, e.g. if the binary specifies a segment to be loaded at address 0,
    /// the Ghidra backend may shift the whole binary image by a constant value in memory.
    /// Thus addresses as specified by the binary and addresses as reported by Ghidra may differ by a constant offset,
    /// which is stored in this value.
    pub address_base_offset: u64,
}

impl Program {
    /// Find a block term by its term identifier.
    /// WARNING: The function simply iterates through all blocks,
    /// i.e. it is very inefficient for large projects!
    pub fn find_block(&self, tid: &Tid) -> Option<&Term<Blk>> {
        self.subs
            .iter()
            .map(|sub| sub.term.blocks.iter())
            .flatten()
            .find(|block| block.tid == *tid)
    }
}

/// Calling convention related data
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub struct CallingConvention {
    /// The name of the calling convention
    #[serde(rename = "calling_convention")]
    pub name: String,
    /// A list of possible parameter register
    pub parameter_register: Vec<String>,
    /// A list of possible return register
    pub return_register: Vec<String>,
    /// A list of callee-saved register,
    /// i.e. the values of these registers should be the same after the call as they were before the call.
    pub callee_saved_register: Vec<String>,
}

/// The `Project` struct is the main data structure representing a binary.
///
/// It contains information about the disassembled binary
/// and about the execution environment of the binary.
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub struct Project {
    /// All (known) executable code of the binary is contained in the `program` term.
    pub program: Term<Program>,
    /// The CPU architecture on which the binary is assumed to be executed.
    pub cpu_architecture: String,
    /// The stack pointer register for the given CPU architecture.
    pub stack_pointer_register: Variable,
    /// The known calling conventions that may be used for calls to extern functions.
    pub calling_conventions: Vec<CallingConvention>,
}

impl Project {
    /// Return the size (in bytes) for pointers of the given architecture.
    pub fn get_pointer_bytesize(&self) -> ByteSize {
        self.stack_pointer_register.size
    }

    /// Try to guess a standard calling convention from the list of calling conventions in the project.
    pub fn get_standard_calling_convention(&self) -> Option<&CallingConvention> {
        self.calling_conventions
            .iter()
            .find(|cconv| cconv.name == "__stdcall")
    }
}

impl Project {
    /// For all expressions contained in the project,
    /// replace trivially computable subexpressions like `a XOR a` with their result.
    fn substitute_trivial_expressions(&mut self) {
        for sub in self.program.term.subs.iter_mut() {
            for block in sub.term.blocks.iter_mut() {
                for def in block.term.defs.iter_mut() {
                    match &mut def.term {
                        Def::Assign { value: expr, .. } | Def::Load { address: expr, .. } => {
                            expr.substitute_trivial_operations()
                        }
                        Def::Store { address, value } => {
                            address.substitute_trivial_operations();
                            value.substitute_trivial_operations();
                        }
                    }
                }
                for jmp in block.term.jmps.iter_mut() {
                    match &mut jmp.term {
                        Jmp::Branch(_) | Jmp::Call { .. } | Jmp::CallOther { .. } => (),
                        Jmp::BranchInd(expr)
                        | Jmp::CBranch {
                            condition: expr, ..
                        }
                        | Jmp::CallInd { target: expr, .. }
                        | Jmp::Return(expr) => expr.substitute_trivial_operations(),
                    }
                }
            }
        }
    }

    /// Replace jumps to nonexisting TIDs with jumps to a dummy target
    /// representing an artificial sink in the control flow graph.
    /// Return a log message for each replaced jump target.
    ///
    /// Nonexisting jump targets may be generated by the Ghidra backend
    /// if the data at the target address is not a valid assembly instruction.
    #[must_use]
    fn remove_references_to_nonexisting_tids(&mut self) -> Vec<LogMessage> {
        // Gather all existing jump targets
        let mut jump_target_tids = HashSet::new();
        for sub in self.program.term.subs.iter() {
            jump_target_tids.insert(sub.tid.clone());
            for block in sub.term.blocks.iter() {
                jump_target_tids.insert(block.tid.clone());
            }
        }
        for symbol in self.program.term.extern_symbols.iter() {
            jump_target_tids.insert(symbol.tid.clone());
        }
        // Replace all jumps to non-existing jump targets with jumps to dummy targets
        let dummy_sub_tid = Tid::new("Artificial Sink Sub");
        let dummy_blk_tid = Tid::new("Artificial Sink Block");
        let mut log_messages = Vec::new();
        for sub in self.program.term.subs.iter_mut() {
            for block in sub.term.blocks.iter_mut() {
                for jmp in block.term.jmps.iter_mut() {
                    if let Err(log_msg) = jmp.retarget_nonexisting_jump_targets_to_dummy_tid(
                        &jump_target_tids,
                        &dummy_sub_tid,
                        &dummy_blk_tid,
                    ) {
                        log_messages.push(log_msg);
                    }
                }
            }
        }
        // If at least one dummy jump was inserted, add the corresponding dummy sub and block to the program.
        if !log_messages.is_empty() {
            let dummy_sub: Term<Sub> = Term {
                tid: dummy_sub_tid,
                term: Sub {
                    name: "Artificial Sink Sub".to_string(),
                    blocks: vec![Term {
                        tid: dummy_blk_tid,
                        term: Blk {
                            defs: Vec::new(),
                            jmps: Vec::new(),
                        },
                    }],
                },
            };
            self.program.term.subs.push(dummy_sub);
        }
        log_messages
    }

    /// Run some normalization passes over the project.
    ///
    /// Passes:
    /// - Replace trivial expressions like `a XOR a` with their result.
    /// - Replace jumps to nonexisting TIDs with jumps to an artificial sink target in the CFG.
    #[must_use]
    pub fn normalize(&mut self) -> Vec<LogMessage> {
        self.substitute_trivial_expressions();
        self.remove_references_to_nonexisting_tids()
    }
}

#[cfg(test)]
mod tests {
    use crate::intermediate_representation::BinOpType;

    use super::*;

    impl Blk {
        pub fn mock() -> Term<Blk> {
            Term {
                tid: Tid::new("block"),
                term: Blk {
                    defs: Vec::new(),
                    jmps: Vec::new(),
                },
            }
        }
    }

    impl Sub {
        pub fn mock(name: impl ToString) -> Term<Sub> {
            Term {
                tid: Tid::new(name.to_string()),
                term: Sub {
                    name: name.to_string(),
                    blocks: Vec::new(),
                },
            }
        }
    }

    impl Program {
        pub fn mock_empty() -> Program {
            Program {
                subs: Vec::new(),
                extern_symbols: Vec::new(),
                entry_points: Vec::new(),
                address_base_offset: 0,
            }
        }
    }

    impl CallingConvention {
        pub fn mock() -> CallingConvention {
            CallingConvention {
                name: "__stdcall".to_string(), // so that the mock is useable as standard calling convention in tests
                parameter_register: vec!["RDI".to_string()],
                return_register: vec!["RAX".to_string()],
                callee_saved_register: vec!["RBP".to_string()],
            }
        }
    }

    impl Arg {
        pub fn mock_register(name: impl ToString) -> Arg {
            Arg::Register(Variable::mock(name.to_string(), ByteSize::new(8)))
        }
    }

    impl ExternSymbol {
        pub fn mock() -> ExternSymbol {
            ExternSymbol {
                tid: Tid::new("mock_symbol"),
                addresses: vec!["UNKNOWN".to_string()],
                name: "mock_symbol".to_string(),
                calling_convention: Some("__stdcall".to_string()),
                parameters: vec![Arg::mock_register("RDI")],
                return_values: vec![Arg::mock_register("RAX")],
                no_return: false,
            }
        }
    }

    impl Project {
        pub fn mock_empty() -> Project {
            Project {
                program: Term {
                    tid: Tid::new("program_tid"),
                    term: Program::mock_empty(),
                },
                cpu_architecture: "x86_64".to_string(),
                stack_pointer_register: Variable::mock("RSP", 8u64),
                calling_conventions: Vec::new(),
            }
        }
    }

    #[test]
    fn retarget_nonexisting_jumps() {
        let mut jmp_term = Term {
            tid: Tid::new("jmp"),
            term: Jmp::Branch(Tid::new("nonexisting_target")),
        };
        assert_eq!(jmp_term.term, Jmp::Branch(Tid::new("nonexisting_target")));
        assert!(jmp_term
            .retarget_nonexisting_jump_targets_to_dummy_tid(
                &HashSet::new(),
                &Tid::new("dummy_sub"),
                &Tid::new("dummy_blk")
            )
            .is_err());
        assert_eq!(jmp_term.term, Jmp::Branch(Tid::new("dummy_blk")));
    }

    #[test]
    fn zero_extension_check() {
        let eax_variable = Expression::Var(Variable {
            name: String::from("EAX"),
            size: ByteSize::new(4),
            is_temp: false,
        });
        let int_sub_expr = Expression::BinOp {
            op: BinOpType::IntSub,
            lhs: Box::new(Expression::Var(Variable {
                name: String::from("EAX"),
                size: ByteSize::new(4),
                is_temp: false,
            })),
            rhs: Box::new(Expression::Var(Variable {
                name: String::from("ECX"),
                size: ByteSize::new(4),
                is_temp: false,
            })),
        };

        let zero_extend_def = Term {
            tid: Tid::new("zero_tid"),
            term: Def::Assign {
                var: Variable {
                    name: String::from("RAX"),
                    size: ByteSize::new(8),
                    is_temp: false,
                },
                value: Expression::Cast {
                    op: CastOpType::IntZExt,
                    size: ByteSize::new(8),
                    arg: Box::new(eax_variable.clone()),
                },
            },
        };
        // An expression that is a zero extension but does not directly contain a variable
        let zero_extend_but_no_var_def = Term {
            tid: Tid::new("zero_tid"),
            term: Def::Assign {
                var: Variable {
                    name: String::from("RAX"),
                    size: ByteSize::new(8),
                    is_temp: false,
                },
                value: Expression::Cast {
                    op: CastOpType::IntZExt,
                    size: ByteSize::new(8),
                    arg: Box::new(int_sub_expr.clone()),
                },
            },
        };

        let non_zero_extend_def = Term {
            tid: Tid::new("zero_tid"),
            term: Def::Assign {
                var: Variable {
                    name: String::from("RAX"),
                    size: ByteSize::new(8),
                    is_temp: false,
                },
                value: Expression::Cast {
                    op: CastOpType::IntSExt,
                    size: ByteSize::new(8),
                    arg: Box::new(eax_variable.clone()),
                },
            },
        };

        assert_eq!(
            zero_extend_def.check_for_zero_extension(String::from("RAX"), String::from("EAX")),
            Some(Tid::new("zero_tid"))
        );
        assert_eq!(
            zero_extend_but_no_var_def
                .check_for_zero_extension(String::from("RAX"), String::from("EAX")),
            None
        );
        assert_eq!(
            non_zero_extend_def.check_for_zero_extension(String::from("RAX"), String::from("EAX")),
            None
        );
    }
}