1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
use super::object::ObjectType;
use crate::abstract_domain::*;
use crate::analysis::graph::Graph;
use crate::intermediate_representation::*;
use crate::prelude::*;
use crate::utils::log::*;
use std::collections::{BTreeMap, BTreeSet, HashSet};
use super::state::State;
use super::{Config, Data, VERSION};
// contains trait implementations for the `Context` struct,
// especially the implementation of the `interprocedural_fixpoint::Context` trait.
mod trait_impls;
/// Contains all context information needed for the pointer inference fixpoint computation.
///
/// The struct also implements the `interprocedural_fixpoint::Context` trait to enable the fixpoint computation.
pub struct Context<'a> {
/// The program control flow graph on which the fixpoint will be computed
pub graph: Graph<'a>,
/// A reference to the `Project` object representing the binary
pub project: &'a Project,
/// Maps the TIDs of functions that shall be treated as extern symbols to the `ExternSymbol` object representing it.
pub extern_symbol_map: BTreeMap<Tid, &'a ExternSymbol>,
/// A channel where found CWE warnings should be sent to.
/// The receiver may filter or modify the warnings before presenting them to the user.
/// For example, the same CWE warning will be found several times
/// if the fixpoint computation does not instantly stabilize at the corresponding code point.
/// These duplicates need to be filtered out.
pub cwe_collector: crossbeam_channel::Sender<CweWarning>,
/// A channel where log messages should be sent to.
pub log_collector: crossbeam_channel::Sender<LogMessage>,
/// Names of `malloc`-like extern functions.
pub allocation_symbols: Vec<String>,
/// Names of `free`-like extern functions.
pub deallocation_symbols: Vec<String>,
}
impl<'a> Context<'a> {
/// Create a new context object for a given project.
/// Also needs two channels as input to know where CWE warnings and log messages should be sent to.
pub fn new(
project: &Project,
config: Config,
cwe_collector: crossbeam_channel::Sender<CweWarning>,
log_collector: crossbeam_channel::Sender<LogMessage>,
) -> Context {
let mut extern_symbol_map = BTreeMap::new();
for symbol in project.program.term.extern_symbols.iter() {
extern_symbol_map.insert(symbol.tid.clone(), symbol);
}
let extern_symbol_tid_set: HashSet<Tid> = project
.program
.term
.extern_symbols
.iter()
.map(|symb| symb.tid.clone())
.collect();
let graph =
crate::analysis::graph::get_program_cfg(&project.program, extern_symbol_tid_set);
Context {
graph,
project,
extern_symbol_map,
cwe_collector,
log_collector,
allocation_symbols: config.allocation_symbols,
deallocation_symbols: config.deallocation_symbols,
}
}
/// If `result` is an `Err`, log the error message as a debug message through the `log_collector` channel.
pub fn log_debug<'_lt>(&self, result: Result<(), Error>, location: Option<&'_lt Tid>) {
if let Err(err) = result {
let mut log_message =
LogMessage::new_debug(format!("{}", err)).source("Pointer Inference");
if let Some(loc) = location {
log_message = log_message.location(loc.clone());
};
self.log_collector.send(log_message).unwrap();
}
}
/// Detect and log if the stack pointer is not as expected when returning from a function.
fn detect_stack_pointer_information_loss_on_return(
&self,
state_before_return: &State,
return_term: &Term<Jmp>,
) {
let expected_stack_pointer_offset = match self.project.cpu_architecture.as_str() {
"x86" | "x86_64" => Bitvector::from_u64(u64::from(self.project.get_pointer_bytesize()))
.into_truncate(apint::BitWidth::from(self.project.get_pointer_bytesize()))
.unwrap(),
_ => Bitvector::zero(apint::BitWidth::from(self.project.get_pointer_bytesize())),
};
match state_before_return.get_register(&self.project.stack_pointer_register) {
Ok(Data::Pointer(pointer)) => {
if pointer.targets().len() == 1 {
let (id, offset) = pointer.targets().iter().next().unwrap();
if *id != state_before_return.stack_id
|| *offset != expected_stack_pointer_offset.into()
{
self.log_debug(
Err(anyhow!(
"Unexpected stack register value at return instruction"
)),
Some(&return_term.tid),
);
}
}
}
Ok(Data::Top(_)) => self.log_debug(
Err(anyhow!(
"Stack register value lost during function execution"
)),
Some(&return_term.tid),
),
Ok(Data::Value(_)) => self.log_debug(
Err(anyhow!("Unexpected stack register value on return")),
Some(&return_term.tid),
),
Err(err) => self.log_debug(Err(err), Some(&return_term.tid)),
}
}
/// Add a new abstract object and a pointer to it in the return register of an extern call.
/// This models the behaviour of `malloc`-like functions,
/// except that we cannot represent possible `NULL` pointers as return values yet.
fn add_new_object_in_call_return_register(
&self,
mut state: State,
call: &Term<Jmp>,
extern_symbol: &ExternSymbol,
) -> Option<State> {
match extern_symbol.get_unique_return_register() {
Ok(return_register) => {
let object_id = AbstractIdentifier::new(
call.tid.clone(),
AbstractLocation::from_var(return_register).unwrap(),
);
let address_bytesize = self.project.get_pointer_bytesize();
state.memory.add_abstract_object(
object_id.clone(),
Bitvector::zero(apint::BitWidth::from(address_bytesize)).into(),
super::object::ObjectType::Heap,
address_bytesize,
);
let pointer = PointerDomain::new(
object_id,
Bitvector::zero(apint::BitWidth::from(address_bytesize)).into(),
);
state.set_register(return_register, pointer.into());
Some(state)
}
Err(err) => {
// We cannot track the new object, since we do not know where to store the pointer to it.
self.log_debug(Err(err), Some(&call.tid));
Some(state)
}
}
}
/// Mark the object that the parameter of a call is pointing to as freed.
/// If the object may have been already freed, generate a CWE warning.
/// This models the behaviour of `free` and similar functions.
fn mark_parameter_object_as_freed(
&self,
state: &State,
mut new_state: State,
call: &Term<Jmp>,
extern_symbol: &ExternSymbol,
) -> Option<State> {
match extern_symbol.get_unique_parameter() {
Ok(parameter) => {
let parameter_value =
state.eval_parameter_arg(parameter, &self.project.stack_pointer_register);
match parameter_value {
Ok(memory_object_pointer) => {
if let Data::Pointer(pointer) = memory_object_pointer {
if let Err(possible_double_frees) =
new_state.mark_mem_object_as_freed(&pointer)
{
let warning = CweWarning {
name: "CWE415".to_string(),
version: VERSION.to_string(),
addresses: vec![call.tid.address.clone()],
tids: vec![format!("{}", call.tid)],
symbols: Vec::new(),
other: vec![possible_double_frees
.into_iter()
.map(|(id, err)| format!("{}: {}", id, err))
.collect()],
description: format!(
"(Double Free) Object may have been freed before at {}",
call.tid.address
),
};
self.cwe_collector.send(warning).unwrap();
}
} else {
self.log_debug(
Err(anyhow!("Free on a non-pointer value called.")),
Some(&call.tid),
);
}
new_state.remove_unreferenced_objects();
Some(new_state)
}
Err(err) => {
self.log_debug(Err(err), Some(&call.tid));
Some(new_state)
}
}
}
Err(err) => {
// We do not know which memory object to free
self.log_debug(Err(err), Some(&call.tid));
Some(new_state)
}
}
}
/// Check all parameter registers of a call for dangling pointers and report possible use-after-frees.
fn check_parameter_register_for_dangling_pointer(
&self,
state: &State,
call: &Term<Jmp>,
extern_symbol: &ExternSymbol,
) {
for parameter in extern_symbol.parameters.iter() {
match state.eval_parameter_arg(parameter, &self.project.stack_pointer_register) {
Ok(value) => {
if state.memory.is_dangling_pointer(&value, true) {
let warning = CweWarning {
name: "CWE416".to_string(),
version: VERSION.to_string(),
addresses: vec![call.tid.address.clone()],
tids: vec![format!("{}", call.tid)],
symbols: Vec::new(),
other: Vec::new(),
description: format!(
"(Use After Free) Call to {} may access freed memory at {}",
extern_symbol.name, call.tid.address
),
};
self.cwe_collector.send(warning).unwrap();
}
}
Err(err) => self.log_debug(
Err(err.context(format!(
"Function parameter {:?} could not be evaluated",
parameter
))),
Some(&call.tid),
),
}
}
}
/// Handle an extern symbol call, whose concrete effect on the state is unknown.
/// Basically, we assume that the call may write to all memory objects and register that is has access to.
fn handle_generic_extern_call(
&self,
state: &State,
mut new_state: State,
call: &Term<Jmp>,
extern_symbol: &ExternSymbol,
) -> Option<State> {
self.log_debug(
new_state.clear_stack_parameter(extern_symbol, &self.project.stack_pointer_register),
Some(&call.tid),
);
let calling_conv = extern_symbol.get_calling_convention(&self.project);
let mut possible_referenced_ids = BTreeSet::new();
if extern_symbol.parameters.is_empty() && extern_symbol.return_values.is_empty() {
// We assume here that we do not know the parameters and approximate them by all possible parameter registers.
// This approximation is wrong if the function is known but has neither parameters nor return values.
// We cannot distinguish these two cases yet.
for parameter_register_name in calling_conv.parameter_register.iter() {
if let Some(register_value) = state.get_register_by_name(parameter_register_name) {
possible_referenced_ids.append(&mut register_value.referenced_ids());
}
}
} else {
for parameter in extern_symbol.parameters.iter() {
if let Ok(data) =
state.eval_parameter_arg(parameter, &self.project.stack_pointer_register)
{
possible_referenced_ids.append(&mut data.referenced_ids());
}
}
}
possible_referenced_ids =
state.add_recursively_referenced_ids_to_id_set(possible_referenced_ids);
// Delete content of all referenced objects, as the function may write to them.
for id in possible_referenced_ids.iter() {
new_state
.memory
.assume_arbitrary_writes_to_object(id, &possible_referenced_ids);
}
Some(new_state)
}
/// Get the offset of the current stack pointer to the base of the current stack frame.
fn get_current_stack_offset(&self, state: &State) -> BitvectorDomain {
if let Ok(Data::Pointer(ref stack_pointer)) =
state.get_register(&self.project.stack_pointer_register)
{
if stack_pointer.targets().len() == 1 {
let (stack_id, stack_offset_domain) =
stack_pointer.targets().iter().next().unwrap();
if *stack_id == state.stack_id {
stack_offset_domain.clone()
} else {
BitvectorDomain::new_top(stack_pointer.bytesize())
}
} else {
BitvectorDomain::new_top(self.project.stack_pointer_register.size)
}
} else {
BitvectorDomain::new_top(self.project.stack_pointer_register.size)
}
}
}
#[cfg(test)]
mod tests;