expression.rs 16.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
use std::collections::HashMap;

use super::Variable;
use super::{ByteSize, Def};
use crate::{pcode::RegisterProperties, prelude::*};

mod builder;

/// An expression is a calculation rule
/// on how to compute a certain value given some variables (register values) as input.
///
/// The basic building blocks of expressions are the same as for Ghidra P-Code.
/// However, expressions can be nested, unlike original P-Code.
///
/// Computing the value of an expression is a side-effect-free operation.
///
/// Expressions are typed in the sense that each expression has a `ByteSize`
/// indicating the size of the result when evaluating the expression.
/// Some expressions impose restrictions on the sizes of their inputs
/// for the expression to be well-typed.
///
/// All operations are defined the same as the corresponding P-Code operation.
/// Further information about specific operations can be obtained by looking up the P-Code mnemonics in the
/// [P-Code Reference Manual](https://ghidra.re/courses/languages/html/pcoderef.html).
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone)]
pub enum Expression {
    /// A variable representing a register or temporary value of known size.
    Var(Variable),
    /// A constant value represented by a bitvector.
    Const(Bitvector),
    /// A binary operation.
    /// Note that most (but not all) operations require the left hand side (`lhs`)
    /// and right hand side (`rhs`) to be of equal size.
    BinOp {
        op: BinOpType,
        lhs: Box<Expression>,
        rhs: Box<Expression>,
    },
    /// A unary operation
    UnOp { op: UnOpType, arg: Box<Expression> },
    /// A cast operation for type cast between integer and floating point types of different byte lengths.
    Cast {
        op: CastOpType,
        size: ByteSize,
        arg: Box<Expression>,
    },
    /// An unknown value but with known size.
    /// This may be generated for e.g. unsupported assembly instructions.
    /// Note that computation of an unknown value is still required to be side-effect-free!
    Unknown { description: String, size: ByteSize },
    /// Extracting a sub-bitvector from the argument expression.
    Subpiece {
        low_byte: ByteSize,
        size: ByteSize,
        arg: Box<Expression>,
    },
}

impl Expression {
    /// Return the size (in bytes) of the result value of the expression.
    pub fn bytesize(&self) -> ByteSize {
        use BinOpType::*;
        use Expression::*;
        match self {
            Var(var) => var.size,
            Const(bitvec) => bitvec.width().into(),
            BinOp { op, lhs, rhs } => match op {
                Piece => lhs.bytesize() + rhs.bytesize(),
                IntEqual | IntNotEqual | IntLess | IntSLess | IntLessEqual | IntSLessEqual
                | IntCarry | IntSCarry | IntSBorrow | BoolXOr | BoolOr | BoolAnd | FloatEqual
                | FloatNotEqual | FloatLess | FloatLessEqual => ByteSize::new(1),
                IntAdd | IntSub | IntAnd | IntOr | IntXOr | IntLeft | IntRight | IntSRight
                | IntMult | IntDiv | IntRem | IntSDiv | IntSRem | FloatAdd | FloatSub
                | FloatMult | FloatDiv => lhs.bytesize(),
            },
            UnOp { op, arg } => match op {
                UnOpType::FloatNaN => ByteSize::new(1),
                _ => arg.bytesize(),
            },
            Cast { size, .. } | Unknown { size, .. } | Subpiece { size, .. } => *size,
        }
    }

    /// Substitute trivial BinOp-expressions with their results,
    /// e.g. substitute `a or a` with `a`.
    ///
    /// This function assumes that `self` is a `BinOp`
    /// and it does not substitute trivial expressions in the two input expressions of the `BinOp`.
    fn substitute_trivial_binops(&mut self) {
        use BinOpType::*;
        use Expression::*;
        if let BinOp { op, lhs, rhs } = self {
            if lhs == rhs {
                match op {
                    BoolAnd | BoolOr | IntAnd | IntOr => {
                        // This is an identity operation
                        *self = (**lhs).clone();
                    }
                    BoolXOr | IntXOr => {
                        // `a xor a` always equals zero.
                        *self = Expression::Const(Bitvector::zero(lhs.bytesize().into()));
                    }
                    IntEqual | IntLessEqual | IntSLessEqual => {
                        *self = Expression::Const(Bitvector::one(ByteSize::new(1).into()));
                    }
                    IntNotEqual | IntLess | IntSLess => {
                        *self = Expression::Const(Bitvector::zero(ByteSize::new(1).into()));
                    }
                    _ => (),
                }
            } else {
                match (&**lhs, &**rhs) {
                    (Const(bitvec), other) | (other, Const(bitvec)) if bitvec.is_zero() => {
                        if matches!(op, IntOr | IntXOr | BoolOr | BoolXOr) {
                            // `a or 0 = a` and `a xor 0 = a`
                            *self = other.clone();
                        }
                    }
                    (Const(bitvec), other) | (other, Const(bitvec))
                        if bitvec.clone().into_bitnot().is_zero() =>
                    {
                        if matches!(op, IntAnd | BoolAnd) {
                            // `a and -1 = a` since all bits of -1 are 1.
                            *self = other.clone()
                        }
                    }
                    _ => (),
                }
            }
        }
    }

    /// Substitute some trivial expressions with their result.
    /// E.g. substitute `a XOR a` with zero or substitute `a OR a` with `a`.
    pub fn substitute_trivial_operations(&mut self) {
        use Expression::*;
        match self {
            Var(_) | Const(_) | Unknown { .. } => (),
            Subpiece {
                low_byte,
                size,
                arg,
            } => {
                arg.substitute_trivial_operations();
                if *low_byte == ByteSize::new(0) && *size == arg.bytesize() {
                    *self = (**arg).clone();
                }
            }
            Cast { op, size, arg } => {
                arg.substitute_trivial_operations();
                if (*op == CastOpType::IntSExt || *op == CastOpType::IntZExt)
                    && *size == arg.bytesize()
                {
                    *self = (**arg).clone();
                }
            }
            UnOp { op: _, arg } => arg.substitute_trivial_operations(),
            BinOp { op: _, lhs, rhs } => {
                lhs.substitute_trivial_operations();
                rhs.substitute_trivial_operations();
                self.substitute_trivial_binops();
            }
        }
    }

    /// This function checks for sub registers in pcode instruction and casts them into
    /// SUBPIECE expressions with the base register as argument. It also checks whether
    /// the given Term<Def> has a output sub register and if so, casts it into its
    /// corresponding base register.
    /// Lastly, it checks whether the following pcode instruction is a zero extension of
    /// the currently overwritten sub register. If so, the zero extension is wrapped around
    /// the current instruction and the TID of the zero extension instruction is returned
    /// for later removal.
    /// If there is no zero extension but an output register, the multiple SUBPIECEs are put
    /// together to the size of the corresponding output base register using the PIECE instruction.
    /// A few examples:
    /// 1. From: EAX = COPY EDX;
    ///    To:   RAX = COPY PIECE(SUBPIECE(RAX, 4, 4), SUBPIECE(RDX, 0, 4));
    ///
    /// 2. From:  AH = AH INT_XOR AH;
    ///    To:   RAX = PIECE(PIECE(SUBPIECE(RAX, 2, 6), (SUBPIECE(RAX, 1, 1) INT_XOR SUBPIECE(RAX, 1, 1)), SUBPIECE(RAX, 0, 1));
    ///
    /// 3. FROM EAX = COPY EDX && RAX = INT_ZEXT EAX;
    ///    To:  RAX = INT_ZEXT SUBPIECE(RDX, 0, 4);
    pub fn cast_sub_registers_to_base_register_subpieces(
        &mut self,
        output: Option<&mut Variable>,
        register_map: &HashMap<&String, &RegisterProperties>,
        peeked: Option<&&mut Term<Def>>,
    ) -> Option<Tid> {
        let mut output_base_size: Option<ByteSize> = None;
        let mut output_base_register: Option<&&RegisterProperties> = None;
        let mut output_sub_register: Option<&RegisterProperties> = None;
        let mut zero_extend_tid: Option<Tid> = None;

        if let Some(output_value) = output {
            if let Some(register) = register_map.get(&output_value.name) {
                if *register.register != *register.base_register {
                    output_sub_register = Some(register);
                    output_base_register = register_map.get(&register.base_register);
                    output_value.name = register.base_register.clone();
                    output_value.size = output_base_register.unwrap().size;
                    output_base_size = Some(output_value.size);

                    if let Some(peek) = peeked {
                        zero_extend_tid = peek.check_for_zero_extension(
                            output_value.name.clone(),
                            output_sub_register.unwrap().register.clone(),
                        );
                    }
                }
            }
        }
        self.replace_input_sub_register(register_map);
        // based on the zero extension and base register output, either piece the subpieces together,
        // zero extend the expression or do nothing (e.g. if output is a virtual register, no further actions should be taken)
        self.piece_zero_extend_or_none(
            zero_extend_tid.clone(),
            output_base_register,
            output_base_size,
            output_sub_register,
        );

        zero_extend_tid
    }

    /// This function recursively iterates into the expression and checks whether a sub register was used.
    /// If so, the sub register is turned into a SUBPIECE of the corresponding base register.
    fn replace_input_sub_register(&mut self, register_map: &HashMap<&String, &RegisterProperties>) {
        match self {
            Expression::BinOp { lhs, rhs, .. } => {
                lhs.replace_input_sub_register(register_map);
                rhs.replace_input_sub_register(register_map);
            }
            Expression::UnOp { arg, .. } | Expression::Cast { arg, .. } => {
                arg.replace_input_sub_register(register_map)
            }
            Expression::Subpiece { arg, .. } => {
                let truncated: &mut Expression = arg;
                // Check whether the truncated data source is a sub register and if so,
                // change it to its corresponding base register.
                match truncated {
                    Expression::Var(variable) => {
                        if let Some(register) = register_map.get(&variable.name) {
                            if variable.name != *register.base_register {
                                variable.name = register.base_register.clone();
                                variable.size =
                                    register_map.get(&register.base_register).unwrap().size
                            }
                        }
                    }
                    _ => arg.replace_input_sub_register(register_map),
                }
            }
            Expression::Var(variable) => {
                if let Some(register) = register_map.get(&variable.name) {
                    if variable.name != *register.base_register {
                        self.create_subpiece_from_sub_register(
                            register.base_register.clone(),
                            register.size,
                            register.lsb,
                            register_map,
                        );
                    }
                }
            }
            _ => (),
        }
    }

    /// This function creates a SUBPIECE expression
    /// from a sub_register containing the corresponding base register.
    fn create_subpiece_from_sub_register(
        &mut self,
        base: String,
        size: ByteSize,
        lsb: ByteSize,
        register_map: &HashMap<&String, &RegisterProperties>,
    ) {
        *self = Expression::Subpiece {
            low_byte: lsb,
            size,
            arg: Box::new(Expression::Var(Variable {
                name: base.clone(),
                size: register_map.get(&base).unwrap().size,
                is_temp: false,
            })),
        };
    }

    /// This function either wraps the current expression into a
    /// 1. zero extension expression: if the next instruction is a zero extension
    /// of the currently overwritten sub register
    /// 2. piece expression: if no zero extension is done the a sub register is overwritten
    /// or does nothing in case there is no overwritten sub register.
    fn piece_zero_extend_or_none(
        &mut self,
        zero_extend: Option<Tid>,
        output_base_register: Option<&&RegisterProperties>,
        output_size: Option<ByteSize>,
        sub_register: Option<&RegisterProperties>,
    ) {
        if zero_extend.is_some() {
            *self = Expression::Cast {
                op: CastOpType::IntZExt,
                size: output_size.unwrap(),
                arg: Box::new(self.clone()),
            }
        } else if output_base_register.is_some() {
            self.piece_two_expressions_together(
                *output_base_register.unwrap(),
                sub_register.unwrap(),
            );
        }
    }

    /// This function puts multiple SUBPIECE into PIECE of the size of the
    /// base register. Depending on the position of the LSB of the sub register,
    /// also nested PIECE instruction are possible.
    fn piece_two_expressions_together(
        &mut self,
        output_base_register: &RegisterProperties,
        sub_register: &RegisterProperties,
    ) {
        let base_size: ByteSize = output_base_register.size;
        let base_name: &String = &output_base_register.register;
        let sub_size: ByteSize = sub_register.size;
        let sub_lsb: ByteSize = sub_register.lsb;

        let base_subpiece = Box::new(Expression::Var(Variable {
            name: base_name.clone(),
            size: base_size,
            is_temp: false,
        }));

        // Build PIECE as PIECE(lhs:PIECE(lhs:higher subpiece, rhs:sub register), rhs:lower subpiece)
        if sub_register.lsb > ByteSize::new(0) {
            *self = Expression::BinOp {
                op: BinOpType::Piece,
                lhs: Box::new(Expression::BinOp {
                    op: BinOpType::Piece,
                    lhs: Box::new(Expression::Subpiece {
                        low_byte: sub_lsb + sub_size,
                        size: base_size - (sub_lsb + sub_size),
                        arg: base_subpiece.clone(),
                    }),
                    rhs: Box::new(self.clone()),
                }),
                rhs: Box::new(Expression::Subpiece {
                    low_byte: ByteSize::new(0),
                    size: sub_lsb,
                    arg: base_subpiece,
                }),
            }
        }
        // Build PIECE as PIECE(lhs: high subpiece, rhs: sub register)
        else {
            *self = Expression::BinOp {
                op: BinOpType::Piece,
                lhs: Box::new(Expression::Subpiece {
                    low_byte: sub_size,
                    size: base_size - sub_size,
                    arg: base_subpiece,
                }),
                rhs: Box::new(self.clone()),
            }
        }
    }
}

/// The type/mnemonic of a binary operation
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub enum BinOpType {
    Piece,
    IntEqual,
    IntNotEqual,
    IntLess,
    IntSLess,
    IntLessEqual,
    IntSLessEqual,
    IntAdd,
    IntSub,
    IntCarry,
    IntSCarry,
    IntSBorrow,
    IntXOr,
    IntAnd,
    IntOr,
    IntLeft,
    IntRight,
    IntSRight,
    IntMult,
    IntDiv,
    IntRem,
    IntSDiv,
    IntSRem,
    BoolXOr,
    BoolAnd,
    BoolOr,
    FloatEqual,
    FloatNotEqual,
    FloatLess,
    FloatLessEqual,
    FloatAdd,
    FloatSub,
    FloatMult,
    FloatDiv,
}

/// The type/mnemonic of a typecast
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub enum CastOpType {
    IntZExt,
    IntSExt,
    Int2Float,
    Float2Float,
    Trunc,
    PopCount,
}

/// The type/mnemonic of an unary operation
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub enum UnOpType {
    IntNegate,
    Int2Comp,
    BoolNegate,
    FloatNegate,
    FloatAbs,
    FloatSqrt,
    FloatCeil,
    FloatFloor,
    FloatRound,
    FloatNaN,
}

#[cfg(test)]
mod tests;