fuzzy.c 18.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
/* ssdeep
 * Copyright (C) 2002 Andrew Tridgell <tridge@samba.org>
 * Copyright (C) 2006 ManTech International Corporation
 * Copyright (C) 2013 Helmut Grohne <helmut@subdivi.de>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 * Earlier versions of this code were named fuzzy.c and can be found at:
 *     http://www.samba.org/ftp/unpacked/junkcode/spamsum/
 *     http://ssdeep.sf.net/
 */

#include <assert.h>
#include <errno.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "fuzzy.h"

#if defined(__GNUC__) && __GNUC__ >= 3
#define likely(x)       __builtin_expect(!!(x), 1)
#define unlikely(x)     __builtin_expect(!!(x), 0)
#else
#define likely(x) x
#define unlikely(x) x
#endif

#ifndef MIN
#define MIN(a,b) ((a)<(b)?(a):(b))
#endif

#ifndef MAX
#define MAX(a,b) ((a)>(b)?(a):(b))
#endif

#define ROLLING_WINDOW 7
#define MIN_BLOCKSIZE 3
#define HASH_PRIME 0x01000193
#define HASH_INIT 0x28021967
#define NUM_BLOCKHASHES 31

struct roll_state {
  unsigned char window[ROLLING_WINDOW];
  uint32_t h1, h2, h3;
  uint32_t n;
};

static void roll_init(/*@out@*/ struct roll_state *self) {
	memset(self, 0, sizeof(struct roll_state));
}

/*
 * a rolling hash, based on the Adler checksum. By using a rolling hash
 * we can perform auto resynchronisation after inserts/deletes

 * internally, h1 is the sum of the bytes in the window and h2
 * is the sum of the bytes times the index

 * h3 is a shift/xor based rolling hash, and is mostly needed to ensure that
 * we can cope with large blocksize values
 */
static void roll_hash(struct roll_state *self, unsigned char c)
{
  self->h2 -= self->h1;
  self->h2 += ROLLING_WINDOW * (uint32_t)c;

  self->h1 += (uint32_t)c;
  self->h1 -= (uint32_t)self->window[self->n % ROLLING_WINDOW];

  self->window[self->n % ROLLING_WINDOW] = c;
  self->n++;

  /* The original spamsum AND'ed this value with 0xFFFFFFFF which
   * in theory should have no effect. This AND has been removed
   * for performance (jk) */
  self->h3 <<= 5;
  self->h3 ^= c;
}

static uint32_t roll_sum(const struct roll_state *self)
{
  return self->h1 + self->h2 + self->h3;
}

/* A simple non-rolling hash, based on the FNV hash. */
static uint32_t sum_hash(unsigned char c, uint32_t h)
{
  return (h * HASH_PRIME) ^ c;
}

/* A blockhash contains a signature state for a specific (implicit) blocksize.
 * The blocksize is given by SSDEEP_BS(index). The h and halfh members are the
 * FNV hashes, where halfh stops to be reset after digest is SPAMSUM_LENGTH/2
 * long. The halfh hash is needed be able to truncate digest for the second
 * output hash to stay compatible with ssdeep output. */
struct blockhash_context
{
  uint32_t h, halfh;
  char digest[SPAMSUM_LENGTH];
  unsigned int dlen;
};

struct fuzzy_state
{
  unsigned int bhstart, bhend;
  struct blockhash_context bh[NUM_BLOCKHASHES];
  size_t total_size;
  struct roll_state roll;
};

#define SSDEEP_BS(index) (((uint32_t)MIN_BLOCKSIZE) << (index))

/*@only@*/ /*@null@*/ struct fuzzy_state *fuzzy_new(void)
{
  struct fuzzy_state *self;
  if(NULL == (self = malloc(sizeof(struct fuzzy_state))))
    /* malloc sets ENOMEM */
    return NULL;
  self->bhstart = 0;
  self->bhend = 1;
  self->bh[0].h = HASH_INIT;
  self->bh[0].halfh = HASH_INIT;
  self->bh[0].dlen = 0;
  self->total_size = 0;
  roll_init(&self->roll);
  return self;
}

static void fuzzy_try_fork_blockhash(struct fuzzy_state *self)
{
  struct blockhash_context *obh, *nbh;
  if (self->bhend >= NUM_BLOCKHASHES)
    return;
  assert(self->bhend > 0);
  obh = self->bh + (self->bhend - 1);
  nbh = obh + 1;
  nbh->h = obh->h;
  nbh->halfh = obh->halfh;
  nbh->dlen = 0;
  ++self->bhend;
}

static void fuzzy_try_reduce_blockhash(struct fuzzy_state *self)
{
  assert(self->bhstart < self->bhend);
  if (self->bhend - self->bhstart < 2)
    /* Need at least two working hashes. */
    return;
  if ((size_t)SSDEEP_BS(self->bhstart) * SPAMSUM_LENGTH >=
      self->total_size)
    /* Initial blocksize estimate would select this or a smaller
     * blocksize. */
    return;
  if (self->bh[self->bhstart + 1].dlen < SPAMSUM_LENGTH / 2)
    /* Estimate adjustment would select this blocksize. */
    return;
  /* At this point we are clearly no longer interested in the
   * start_blocksize. Get rid of it. */
  ++self->bhstart;
}

static const char *b64 =
  "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";

static void fuzzy_engine_step(struct fuzzy_state *self, unsigned char c)
{
  size_t h;
  unsigned int i;
  /* At each character we update the rolling hash and the normal hashes.
   * When the rolling hash hits a reset value then we emit a normal hash
   * as a element of the signature and reset the normal hash. */
  roll_hash(&self->roll, c);
  h = roll_sum(&self->roll);

  for (i = self->bhstart; i < self->bhend; ++i)
  {
    self->bh[i].h = sum_hash(c, self->bh[i].h);
    self->bh[i].halfh = sum_hash(c, self->bh[i].halfh);
  }

  for (i = self->bhstart; i < self->bhend; ++i)
  {
    /* With growing blocksize almost no runs fail the next test. */
    if (likely(h % SSDEEP_BS(i) != SSDEEP_BS(i) - 1))
      /* Once this condition is false for one bs, it is
       * automatically false for all further bs. I.e. if
       * h === -1 (mod 2*bs) then h === -1 (mod bs). */
      break;
    /* We have hit a reset point. We now emit hashes which are
     * based on all characters in the piece of the message between
     * the last reset point and this one */
    if (unlikely(0 == self->bh[i].dlen)) {
      /* Can only happen 30 times. */
      /* First step for this blocksize. Clone next. */
      fuzzy_try_fork_blockhash(self);
    }
    if (self->bh[i].dlen < SPAMSUM_LENGTH - 1) {
      /* We can have a problem with the tail overflowing. The
       * easiest way to cope with this is to only reset the
       * normal hash if we have room for more characters in
       * our signature. This has the effect of combining the
       * last few pieces of the message into a single piece
       * */
      self->bh[i].digest[self->bh[i].dlen++] =
	b64[self->bh[i].h % 64];
      self->bh[i].h = HASH_INIT;
      if (self->bh[i].dlen < SPAMSUM_LENGTH / 2)
	self->bh[i].halfh = HASH_INIT;
    } else
      fuzzy_try_reduce_blockhash(self);
  }
}

int fuzzy_update(struct fuzzy_state *self,
		 const unsigned char *buffer,
		 size_t buffer_size) {
  self->total_size += buffer_size;
  for ( ;buffer_size > 0; ++buffer, --buffer_size)
    fuzzy_engine_step(self, *buffer);
  return 0;
}

static int memcpy_eliminate_sequences(char *dst,
				      const char *src,
				      int n)
{
  const char *srcend = src + n;
  assert(n >= 0);
  if (src < srcend) *dst++ = *src++;
  if (src < srcend) *dst++ = *src++;
  if (src < srcend) *dst++ = *src++;
  while (src < srcend)
    if (*src == dst[-1] && *src == dst[-2] && *src == dst[-3])
    {
      ++src;
      --n;
    } else
      *dst++ = *src++;
  return n;
}

#ifdef S_SPLINT_S
extern const int EOVERFLOW;
#endif

// We need some extra help on Win32
#ifdef _WIN32
# define EOVERFLOW 84
# define ftello    ftell
# define fseeko    fseek
#endif

int fuzzy_digest(const struct fuzzy_state *self,
		 /*@out@*/ char *result,
		 unsigned int flags)
{
  unsigned int bi = self->bhstart;
  uint32_t h = roll_sum(&self->roll);
  int i, remain = FUZZY_MAX_RESULT - 1; /* Exclude terminating '\0'. */
  /* Verify that our elimination was not overeager. */
  assert(bi == 0 || (size_t)SSDEEP_BS(bi) / 2 * SPAMSUM_LENGTH <
	 self->total_size);

  /* Initial blocksize guess. */
  while ((size_t)SSDEEP_BS(bi) * SPAMSUM_LENGTH < self->total_size) {
    ++bi;
    if (bi >= NUM_BLOCKHASHES) {
      /* The input exceeds data types. */
      errno = EOVERFLOW;
      return -1;
    }
  }
  /* Adapt blocksize guess to actual digest length. */
  while (bi >= self->bhend)
    --bi;
  while (bi > self->bhstart && self->bh[bi].dlen < SPAMSUM_LENGTH / 2)
    --bi;
  assert (!(bi > 0 && self->bh[bi].dlen < SPAMSUM_LENGTH / 2));

  i = snprintf(result, (size_t)remain, "%u:", SSDEEP_BS(bi));
  if (i <= 0)
    /* Maybe snprintf has set errno here? */
    return -1;
  assert(i < remain);
  remain -= i;
  result += i;
  i = (int)self->bh[bi].dlen;
  assert(i <= remain);
  if ((flags & FUZZY_FLAG_ELIMSEQ) != 0)
    i = memcpy_eliminate_sequences(result, self->bh[bi].digest, i);
  else
    memcpy(result, self->bh[bi].digest, (size_t)i);
  result += i;
  remain -= i;
  if (h != 0)
  {
    assert(remain > 0);
    *result = b64[self->bh[bi].h % 64];
    if((flags & FUZZY_FLAG_ELIMSEQ) == 0 || i < 3 ||
       *result != result[-1] ||
       *result != result[-2] ||
       *result != result[-3]) {
      ++result;
      --remain;
    }
  }
  assert(remain > 0);
  *result++ = ':';
  --remain;
  if (bi < self->bhend - 1)
  {
    ++bi;
    i = (int)self->bh[bi].dlen;
    if ((flags & FUZZY_FLAG_NOTRUNC) == 0 &&
	i > SPAMSUM_LENGTH / 2 - 1)
      i = SPAMSUM_LENGTH / 2 - 1;
    assert(i <= remain);
    if ((flags & FUZZY_FLAG_ELIMSEQ) != 0)
      i = memcpy_eliminate_sequences(result,
				     self->bh[bi].digest, i);
    else
      memcpy(result, self->bh[bi].digest, (size_t)i);
    result += i;
    remain -= i;
    if (h != 0) {
      assert(remain > 0);
      h = (flags & FUZZY_FLAG_NOTRUNC) != 0 ? self->bh[bi].h :
	self->bh[bi].halfh;
      *result = b64[h % 64];
      if ((flags & FUZZY_FLAG_ELIMSEQ) == 0 || i < 3 ||
	  *result != result[-1] ||
	  *result != result[-2] ||
	  *result != result[-3])
      {
	++result;
	--remain;
      }
    }
  } else if (h != 0)
    {
      assert(self->bh[bi].dlen == 0);
      assert(remain > 0);
      *result++ = b64[self->bh[bi].h % 64];
      /* No need to bother with FUZZY_FLAG_ELIMSEQ, because this
       * digest has length 1. */
      --remain;
    }
  *result = '\0';
  return 0;
}

void fuzzy_free(/*@only@*/ struct fuzzy_state *self)
{
  free(self);
}

int fuzzy_hash_buf(const unsigned char *buf,
		   uint32_t buf_len,
		   /*@out@*/ char *result)
{
  struct fuzzy_state *ctx;
  int ret = -1;
  if (NULL == (ctx = fuzzy_new()))
    return -1;
  if (fuzzy_update(ctx, buf, buf_len) < 0)
    goto out;
  if (fuzzy_digest(ctx, result, 0) < 0)
    goto out;
  ret = 0;
 out:
  fuzzy_free(ctx);
  return ret;
}

int fuzzy_hash_stream(FILE *handle, /*@out@*/ char *result)
{
  struct fuzzy_state *ctx;
  unsigned char buffer[4096];
  size_t n;
  int ret = -1;
  if (NULL == (ctx = fuzzy_new()))
    return -1;
  for(;;)
  {
    n = fread(buffer, 1, 4096, handle);
    if (0 == n)
      break;
    if (fuzzy_update(ctx, buffer, n) < 0)
      goto out;
  }
  if (ferror(handle) != 0)
    goto out;
  if (fuzzy_digest(ctx, result, 0) < 0)
    goto out;
  ret = 0;
 out:
  fuzzy_free(ctx);
  return ret;
}

#ifdef S_SPLINT_S
typedef size_t off_t;
int fseeko(FILE *, off_t, int);
off_t ftello(FILE *);
#endif

int fuzzy_hash_file(FILE *handle, /*@out@*/ char *result)
{
  off_t fpos;
  int status;
  fpos = ftello(handle);
  if (fseek(handle, 0, SEEK_SET) < 0)
    return -1;
  status = fuzzy_hash_stream(handle, result);
  if (status == 0)
  {
    if (fseeko(handle, fpos, SEEK_SET) < 0)
      return -1;
  }
  return status;
}

int fuzzy_hash_filename(const char *filename, /*@out@*/ char *result)
{
  int status;
  FILE *handle = fopen(filename, "rb");
  if (NULL == handle)
    return -1;
  status = fuzzy_hash_stream(handle, result);
  /* We cannot do anything about an fclose failure. */
  (void)fclose(handle);
  return status;
}

//
// We only accept a match if we have at least one common substring in
// the signature of length ROLLING_WINDOW. This dramatically drops the
// false positive rate for low score thresholds while having
// negligable affect on the rate of spam detection.
//
// return 1 if the two strings do have a common substring, 0 otherwise
//
static int has_common_substring(const char *s1, const char *s2)
{
  int i, j;
  int num_hashes;
  uint32_t hashes[SPAMSUM_LENGTH];

  // there are many possible algorithms for common substring
  // detection. In this case I am re-using the rolling hash code
  // to act as a filter for possible substring matches

  memset(hashes, 0, sizeof(hashes));

  // first compute the windowed rolling hash at each offset in
  // the first string
  struct roll_state state;
  roll_init (&state);

  for (i=0;s1[i];i++)
  {
    roll_hash(&state, (unsigned char)s1[i]);
    hashes[i] = roll_sum(&state);
  }
  num_hashes = i;

  roll_init(&state);

  // now for each offset in the second string compute the
  // rolling hash and compare it to all of the rolling hashes
  // for the first string. If one matches then we have a
  // candidate substring match. We then confirm that match with
  // a direct string comparison */
  for (i=0;s2[i];i++)
  {
    roll_hash(&state, (unsigned char)s2[i]);
    uint32_t h = roll_sum(&state);
    if (i < ROLLING_WINDOW-1) continue;
    for (j=ROLLING_WINDOW-1;j<num_hashes;j++)
    {
      if (hashes[j] != 0 && hashes[j] == h)
      {
	// we have a potential match - confirm it
	if (strlen(s2+i-(ROLLING_WINDOW-1)) >= ROLLING_WINDOW &&
	    strncmp(s2+i-(ROLLING_WINDOW-1),
		    s1+j-(ROLLING_WINDOW-1),
		    ROLLING_WINDOW) == 0)
	{
	  return 1;
	}
      }
    }
  }

  return 0;
}


// eliminate sequences of longer than 3 identical characters. These
// sequences contain very little information so they tend to just bias
// the result unfairly
static char *eliminate_sequences(const char *str)
{
  char *ret;
  size_t i, j, len;

  ret = strdup(str);
  if (!ret)
    return NULL;

  len = strlen(str);
  if (len < 3)
    return ret;

  for (i=j=3 ; i<len ; i++)
  {
    if (str[i] != str[i-1] ||
	str[i] != str[i-2] ||
	str[i] != str[i-3])
    {
      ret[j++] = str[i];
    }
  }

  ret[j] = 0;

  return ret;
}

//
// this is the low level string scoring algorithm. It takes two strings
// and scores them on a scale of 0-100 where 0 is a terrible match and
// 100 is a great match. The block_size is used to cope with very small
// messages.
//
static uint32_t score_strings(const char *s1,
			      const char *s2,
			      unsigned int block_size)
{
  uint32_t score;
  size_t len1, len2;
  int edit_distn(const char *from, int from_len, const char *to, int to_len);

  len1 = strlen(s1);
  len2 = strlen(s2);

  if (len1 > SPAMSUM_LENGTH || len2 > SPAMSUM_LENGTH) {
    // not a real spamsum signature?
    return 0;
  }

  // the two strings must have a common substring of length
  // ROLLING_WINDOW to be candidates
  if (has_common_substring(s1, s2) == 0) {
    return 0;
  }

  // compute the edit distance between the two strings. The edit distance gives
  // us a pretty good idea of how closely related the two strings are
  score = edit_distn(s1, len1, s2, len2);

  // scale the edit distance by the lengths of the two
  // strings. This changes the score to be a measure of the
  // proportion of the message that has changed rather than an
  // absolute quantity. It also copes with the variability of
  // the string lengths.
  score = (score * SPAMSUM_LENGTH) / (len1 + len2);

  // at this stage the score occurs roughly on a 0-64 scale,
  // with 0 being a good match and 64 being a complete
  // mismatch

  // rescale to a 0-100 scale (friendlier to humans)
  score = (100 * score) / 64;

  // it is possible to get a score above 100 here, but it is a
  // really terrible match
  if (score >= 100)
    return 0;

  // now re-scale on a 0-100 scale with 0 being a poor match and
  // 100 being a excellent match.
  score = 100 - score;

  //  printf ("len1: %"PRIu32"  len2: %"PRIu32"\n", len1, len2);

  // when the blocksize is small we don't want to exaggerate the match size
  if (score > block_size/MIN_BLOCKSIZE * MIN(len1, len2))
  {
    score = block_size/MIN_BLOCKSIZE * MIN(len1, len2);
  }
  return score;
}

//
// Given two spamsum strings return a value indicating the degree
// to which they match.
//
int fuzzy_compare(const char *str1, const char *str2)
{
  unsigned int block_size1, block_size2;
  uint32_t score = 0;
  char *s1, *s2;
  char *s1_1, *s1_2, *s1_3;
  char *s2_1, *s2_2, *s2_3;

  if (NULL == str1 || NULL == str2)
    return -1;

  // each spamsum is prefixed by its block size
  if (sscanf(str1, "%u:", &block_size1) != 1 ||
      sscanf(str2, "%u:", &block_size2) != 1) {
    return -1;
  }

  // if the blocksizes don't match then we are comparing
  // apples to oranges. This isn't an 'error' per se. We could
  // have two valid signatures, but they can't be compared.
  if (block_size1 != block_size2 &&
      block_size1 != block_size2*2 &&
      block_size2 != block_size1*2) {
    return 0;
  }

  // move past the prefix
  str1 = strchr(str1, ':');
  str2 = strchr(str2, ':');

  if (!str1 || !str2) {
    // badly formed ...
    return -1;
  }

  // there is very little information content is sequences of
  // the same character like 'LLLLL'. Eliminate any sequences
  // longer than 3. This is especially important when combined
  // with the has_common_substring() test below.
  // NOTE: This function duplciates str1 and str2
  s1 = eliminate_sequences(str1+1);
  if (!s1)
    return 0;
  s2 = eliminate_sequences(str2+1);
  if (!s2)
  {
    free(s1);
    return 0;
  }

  // now break them into the two pieces
  s1_1 = s1;
  s2_1 = s2;

  s1_2 = strchr(s1, ':');
  s2_2 = strchr(s2, ':');

  if (!s1_2 || !s2_2) {
    // a signature is malformed - it doesn't have 2 parts
    free(s1); free(s2);
    return -1;
  }

  // Chop the first substring. We terminate the first substring
  // and then advance the pointer to the start of the second substring.
  *s1_2 = 0;
  s1_2++;
  *s2_2 = 0;
  s2_2++;

  // Chop the second string at the comma--just before the filename.
  // If the strings don't have a comma (i.e. don't have a filename)
  // that's ok. It's not an error. This function can be called on
  // signatures which don't have filenames attached.
  // We also don't have to advance past the comma however. We don't care
  // about the filename
  s1_3 = strchr(s1_2, ',');
  s2_3 = strchr(s2_2, ',');
  if (s1_3 != NULL)
    *s1_3 = 0;
  if (s2_3 != NULL)
    *s2_3 = 0;

  // each signature has a string for two block sizes. We now
  // choose how to combine the two block sizes. We checked above
  // that they have at least one block size in common
  if (block_size1 == block_size2)
  {
    uint32_t score1, score2;
    score1 = score_strings(s1_1, s2_1, block_size1);
    score2 = score_strings(s1_2, s2_2, block_size1*2);
    score = MAX(score1, score2);
  }
  else if (block_size1 == block_size2*2)
  {
    score = score_strings(s1_1, s2_2, block_size1);
  }
  else
  {
    score = score_strings(s1_2, s2_1, block_size2);
  }

  free(s1);
  free(s2);

  return (int)score;
}