magic.man 20.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
.\" $File: magic.man,v 1.81 2014/03/08 17:28:08 christos Exp $
.Dd April 22, 2013
.Dt MAGIC __FSECTION__
.Os
.\" install as magic.4 on USG, magic.5 on V7, Berkeley and Linux systems.
.Sh NAME
.Nm magic
.Nd file command's magic pattern file
.Sh DESCRIPTION
This manual page documents the format of the magic file as
used by the
.Xr file __CSECTION__
command, version __VERSION__.
The
.Xr file __CSECTION__
command identifies the type of a file using,
among other tests,
a test for whether the file contains certain
.Dq "magic patterns" .
The file
.Pa __MAGIC__
specifies what patterns are to be tested for, what message or
MIME type to print if a particular pattern is found,
and additional information to extract from the file.
.Pp
Each line of the file specifies a test to be performed.
A test compares the data starting at a particular offset
in the file with a byte value, a string or a numeric value.
If the test succeeds, a message is printed.
The line consists of the following fields:
.Bl -tag -width ".Dv message"
.It Dv offset
A number specifying the offset, in bytes, into the file of the data
which is to be tested.
.It Dv type
The type of the data to be tested.
The possible values are:
.Bl -tag -width ".Dv lestring16"
.It Dv byte
A one-byte value.
.It Dv short
A two-byte value in this machine's native byte order.
.It Dv long
A four-byte value in this machine's native byte order.
.It Dv quad
An eight-byte value in this machine's native byte order.
.It Dv float
A 32-bit single precision IEEE floating point number in this machine's native byte order.
.It Dv double
A 64-bit double precision IEEE floating point number in this machine's native byte order.
.It Dv string
A string of bytes.
The string type specification can be optionally followed
by /[WwcCtbT]*.
The
.Dq W
flag compacts whitespace in the target, which must
contain at least one whitespace character.
If the magic has
.Dv n
consecutive blanks, the target needs at least
.Dv n
consecutive blanks to match.
The
.Dq w
flag treats every blank in the magic as an optional blank.
The
.Dq c
flag specifies case insensitive matching: lower case
characters in the magic match both lower and upper case characters in the
target, whereas upper case characters in the magic only match upper case
characters in the target.
The
.Dq C
flag specifies case insensitive matching: upper case
characters in the magic match both lower and upper case characters in the
target, whereas lower case characters in the magic only match upper case
characters in the target.
To do a complete case insensitive match, specify both
.Dq c
and
.Dq C .
The
.Dq t
flag forces the test to be done for text files, while the
.Dq b
flag forces the test to be done for binary files.
The
.Dq T
flag causes the string to be trimmed, i.e. leading and trailing whitespace
is deleted before the string is printed.
.It Dv pstring
A Pascal-style string where the first byte/short/int is interpreted as the
unsigned length.
The length defaults to byte and can be specified as a modifier.
The following modifiers are supported:
.Bl -tag -compact -width B
.It B
A byte length (default).
.It H
A 2 byte big endian length.
.It h
A 2 byte big little length.
.It L
A 4 byte big endian length.
.It l
A 4 byte big little length.
.It J
The length includes itself in its count.
.El
The string is not NUL terminated.
.Dq J
is used rather than the more
valuable
.Dq I
because this type of length is a feature of the JPEG
format.
.It Dv date
A four-byte value interpreted as a UNIX date.
.It Dv qdate
A eight-byte value interpreted as a UNIX date.
.It Dv ldate
A four-byte value interpreted as a UNIX-style date, but interpreted as
local time rather than UTC.
.It Dv qldate
An eight-byte value interpreted as a UNIX-style date, but interpreted as
local time rather than UTC.
.It Dv qwdate
An eight-byte value interpreted as a Windows-style date.
.It Dv beid3
A 32-bit ID3 length in big-endian byte order.
.It Dv beshort
A two-byte value in big-endian byte order.
.It Dv belong
A four-byte value in big-endian byte order.
.It Dv bequad
An eight-byte value in big-endian byte order.
.It Dv befloat
A 32-bit single precision IEEE floating point number in big-endian byte order.
.It Dv bedouble
A 64-bit double precision IEEE floating point number in big-endian byte order.
.It Dv bedate
A four-byte value in big-endian byte order,
interpreted as a Unix date.
.It Dv beqdate
An eight-byte value in big-endian byte order,
interpreted as a Unix date.
.It Dv beldate
A four-byte value in big-endian byte order,
interpreted as a UNIX-style date, but interpreted as local time rather
than UTC.
.It Dv beqldate
An eight-byte value in big-endian byte order,
interpreted as a UNIX-style date, but interpreted as local time rather
than UTC.
.It Dv beqwdate
An eight-byte value in big-endian byte order,
interpreted as a Windows-style date.
.It Dv bestring16
A two-byte unicode (UCS16) string in big-endian byte order.
.It Dv leid3
A 32-bit ID3 length in little-endian byte order.
.It Dv leshort
A two-byte value in little-endian byte order.
.It Dv lelong
A four-byte value in little-endian byte order.
.It Dv lequad
An eight-byte value in little-endian byte order.
.It Dv lefloat
A 32-bit single precision IEEE floating point number in little-endian byte order.
.It Dv ledouble
A 64-bit double precision IEEE floating point number in little-endian byte order.
.It Dv ledate
A four-byte value in little-endian byte order,
interpreted as a UNIX date.
.It Dv leqdate
An eight-byte value in little-endian byte order,
interpreted as a UNIX date.
.It Dv leldate
A four-byte value in little-endian byte order,
interpreted as a UNIX-style date, but interpreted as local time rather
than UTC.
.It Dv leqldate
An eight-byte value in little-endian byte order,
interpreted as a UNIX-style date, but interpreted as local time rather
than UTC.
.It Dv leqwdate
An eight-byte value in little-endian byte order,
interpreted as a Windows-style date.
.It Dv lestring16
A two-byte unicode (UCS16) string in little-endian byte order.
.It Dv melong
A four-byte value in middle-endian (PDP-11) byte order.
.It Dv medate
A four-byte value in middle-endian (PDP-11) byte order,
interpreted as a UNIX date.
.It Dv meldate
A four-byte value in middle-endian (PDP-11) byte order,
interpreted as a UNIX-style date, but interpreted as local time rather
than UTC.
.It Dv indirect
Starting at the given offset, consult the magic database again.
.It Dv name
Define a
.Dq named
magic instance that can be called from another
.Dv use
magic entry, like a subroutine call.
Named instance direct magic offsets are relative to the offset of the
previous matched entry, but indirect offsets are relative to the beginning
of the file as usual.
Named magic entries always match.
.It Dv use
Recursively call the named magic starting from the current offset.
If the name of the referenced begins with a
.Dv ^
then the endianness of the magic is switched; if the magic mentioned
.Dv leshort
for example,
it is treated as
.Dv beshort
and vice versa.
This is useful to avoid duplicating the rules for different endianness.
.It Dv regex
A regular expression match in extended POSIX regular expression syntax
(like egrep).
Regular expressions can take exponential time to process, and their
performance is hard to predict, so their use is discouraged.
When used in production environments, their performance
should be carefully checked.
The type specification can be optionally followed by
.Dv /[c][s] .
The
.Dq c
flag makes the match case insensitive, while the
.Dq s
flag update the offset to the start offset of the match, rather than the end.
The regular expression is tested against line
.Dv N + 1
onwards, where
.Dv N
is the given offset.
Line endings are assumed to be in the machine's native format.
.Dv ^
and
.Dv $
match the beginning and end of individual lines, respectively,
not beginning and end of file.
.It Dv search
A literal string search starting at the given offset.
The same modifier flags can be used as for string patterns.
The search expression must contain the range in the form
.Dv /number,
that is the number of positions at which the match will be
attempted, starting from the start offset.
This is suitable for
searching larger binary expressions with variable offsets, using
.Dv \e
escapes for special characters.
The order of modifier and number is not relevant.
.It Dv default
This is intended to be used with the test
.Em x
(which is always true) and it has no type.
It matches when no other test at that continuation level has matched before.
Clearing that matched tests for a continuation level, can be done using the
.Dv clear
test.
.It Dv clear
This test is always true and clears the match flag for that continuation level.
It is intended to be used with the
.Dv default
test.
.El
.Pp
For compatibility with the Single
.Ux
Standard, the type specifiers
.Dv dC
and
.Dv d1
are equivalent to
.Dv byte ,
the type specifiers
.Dv uC
and
.Dv u1
are equivalent to
.Dv ubyte ,
the type specifiers
.Dv dS
and
.Dv d2
are equivalent to
.Dv short ,
the type specifiers
.Dv uS
and
.Dv u2
are equivalent to
.Dv ushort ,
the type specifiers
.Dv dI ,
.Dv dL ,
and
.Dv d4
are equivalent to
.Dv long ,
the type specifiers
.Dv uI ,
.Dv uL ,
and
.Dv u4
are equivalent to
.Dv ulong ,
the type specifier
.Dv d8
is equivalent to
.Dv quad ,
the type specifier
.Dv u8
is equivalent to
.Dv uquad ,
and the type specifier
.Dv s
is equivalent to
.Dv string .
In addition, the type specifier
.Dv dQ
is equivalent to
.Dv quad
and the type specifier
.Dv uQ
is equivalent to
.Dv uquad .
.Pp
Each top-level magic pattern (see below for an explanation of levels)
is classified as text or binary according to the types used.
Types
.Dq regex
and
.Dq search
are classified as text tests, unless non-printable characters are used
in the pattern.
All other tests are classified as binary.
A top-level
pattern is considered to be a test text when all its patterns are text
patterns; otherwise, it is considered to be a binary pattern.
When
matching a file, binary patterns are tried first; if no match is
found, and the file looks like text, then its encoding is determined
and the text patterns are tried.
.Pp
The numeric types may optionally be followed by
.Dv \*[Am]
and a numeric value,
to specify that the value is to be AND'ed with the
numeric value before any comparisons are done.
Prepending a
.Dv u
to the type indicates that ordered comparisons should be unsigned.
.It Dv test
The value to be compared with the value from the file.
If the type is
numeric, this value
is specified in C form; if it is a string, it is specified as a C string
with the usual escapes permitted (e.g. \en for new-line).
.Pp
Numeric values
may be preceded by a character indicating the operation to be performed.
It may be
.Dv = ,
to specify that the value from the file must equal the specified value,
.Dv \*[Lt] ,
to specify that the value from the file must be less than the specified
value,
.Dv \*[Gt] ,
to specify that the value from the file must be greater than the specified
value,
.Dv \*[Am] ,
to specify that the value from the file must have set all of the bits
that are set in the specified value,
.Dv ^ ,
to specify that the value from the file must have clear any of the bits
that are set in the specified value, or
.Dv ~ ,
the value specified after is negated before tested.
.Dv x ,
to specify that any value will match.
If the character is omitted, it is assumed to be
.Dv = .
Operators
.Dv \*[Am] ,
.Dv ^ ,
and
.Dv ~
don't work with floats and doubles.
The operator
.Dv !\&
specifies that the line matches if the test does
.Em not
succeed.
.Pp
Numeric values are specified in C form; e.g.
.Dv 13
is decimal,
.Dv 013
is octal, and
.Dv 0x13
is hexadecimal.
.Pp
For string values, the string from the
file must match the specified string.
The operators
.Dv = ,
.Dv \*[Lt]
and
.Dv \*[Gt]
(but not
.Dv \*[Am] )
can be applied to strings.
The length used for matching is that of the string argument
in the magic file.
This means that a line can match any non-empty string (usually used to
then print the string), with
.Em \*[Gt]\e0
(because all non-empty strings are greater than the empty string).
.Pp
Dates are treated as numerical values in the respective internal
representation.
.Pp
The special test
.Em x
always evaluates to true.
.It Dv message
The message to be printed if the comparison succeeds.
If the string contains a
.Xr printf 3
format specification, the value from the file (with any specified masking
performed) is printed using the message as the format string.
If the string begins with
.Dq \eb ,
the message printed is the remainder of the string with no whitespace
added before it: multiple matches are normally separated by a single
space.
.El
.Pp
An APPLE 4+4 character APPLE creator and type can be specified as:
.Bd -literal -offset indent
!:apple	CREATYPE
.Ed
.Pp
A MIME type is given on a separate line, which must be the next
non-blank or comment line after the magic line that identifies the
file type, and has the following format:
.Bd -literal -offset indent
!:mime	MIMETYPE
.Ed
.Pp
i.e. the literal string
.Dq !:mime
followed by the MIME type.
.Pp
An optional strength can be supplied on a separate line which refers to
the current magic description using the following format:
.Bd -literal -offset indent
!:strength OP VALUE
.Ed
.Pp
The operand
.Dv OP
can be:
.Dv + ,
.Dv - ,
.Dv * ,
or
.Dv /
and
.Dv VALUE
is a constant between 0 and 255.
This constant is applied using the specified operand
to the currently computed default magic strength.
.Pp
Some file formats contain additional information which is to be printed
along with the file type or need additional tests to determine the true
file type.
These additional tests are introduced by one or more
.Em \*[Gt]
characters preceding the offset.
The number of
.Em \*[Gt]
on the line indicates the level of the test; a line with no
.Em \*[Gt]
at the beginning is considered to be at level 0.
Tests are arranged in a tree-like hierarchy:
if the test on a line at level
.Em n
succeeds, all following tests at level
.Em n+1
are performed, and the messages printed if the tests succeed, until a line
with level
.Em n
(or less) appears.
For more complex files, one can use empty messages to get just the
"if/then" effect, in the following way:
.Bd -literal -offset indent
0      string   MZ
\*[Gt]0x18  leshort  \*[Lt]0x40   MS-DOS executable
\*[Gt]0x18  leshort  \*[Gt]0x3f   extended PC executable (e.g., MS Windows)
.Ed
.Pp
Offsets do not need to be constant, but can also be read from the file
being examined.
If the first character following the last
.Em \*[Gt]
is a
.Em \&(
then the string after the parenthesis is interpreted as an indirect offset.
That means that the number after the parenthesis is used as an offset in
the file.
The value at that offset is read, and is used again as an offset
in the file.
Indirect offsets are of the form:
.Em (( x [.[bislBISL]][+\-][ y ]) .
The value of
.Em x
is used as an offset in the file.
A byte, id3 length, short or long is read at that offset depending on the
.Em [bislBISLm]
type specifier.
The capitalized types interpret the number as a big endian
value, whereas the small letter versions interpret the number as a little
endian value;
the
.Em m
type interprets the number as a middle endian (PDP-11) value.
To that number the value of
.Em y
is added and the result is used as an offset in the file.
The default type if one is not specified is long.
.Pp
That way variable length structures can be examined:
.Bd -literal -offset indent
# MS Windows executables are also valid MS-DOS executables
0           string  MZ
\*[Gt]0x18       leshort \*[Lt]0x40   MZ executable (MS-DOS)
# skip the whole block below if it is not an extended executable
\*[Gt]0x18       leshort \*[Gt]0x3f
\*[Gt]\*[Gt](0x3c.l)  string  PE\e0\e0  PE executable (MS-Windows)
\*[Gt]\*[Gt](0x3c.l)  string  LX\e0\e0  LX executable (OS/2)
.Ed
.Pp
This strategy of examining has a drawback: You must make sure that
you eventually print something, or users may get empty output (like, when
there is neither PE\e0\e0 nor LE\e0\e0 in the above example)
.Pp
If this indirect offset cannot be used directly, simple calculations are
possible: appending
.Em [+-*/%\*[Am]|^]number
inside parentheses allows one to modify
the value read from the file before it is used as an offset:
.Bd -literal -offset indent
# MS Windows executables are also valid MS-DOS executables
0           string  MZ
# sometimes, the value at 0x18 is less that 0x40 but there's still an
# extended executable, simply appended to the file
\*[Gt]0x18       leshort \*[Lt]0x40
\*[Gt]\*[Gt](4.s*512) leshort 0x014c  COFF executable (MS-DOS, DJGPP)
\*[Gt]\*[Gt](4.s*512) leshort !0x014c MZ executable (MS-DOS)
.Ed
.Pp
Sometimes you do not know the exact offset as this depends on the length or
position (when indirection was used before) of preceding fields.
You can specify an offset relative to the end of the last up-level
field using
.Sq \*[Am]
as a prefix to the offset:
.Bd -literal -offset indent
0           string  MZ
\*[Gt]0x18       leshort \*[Gt]0x3f
\*[Gt]\*[Gt](0x3c.l)  string  PE\e0\e0    PE executable (MS-Windows)
# immediately following the PE signature is the CPU type
\*[Gt]\*[Gt]\*[Gt]\*[Am]0       leshort 0x14c     for Intel 80386
\*[Gt]\*[Gt]\*[Gt]\*[Am]0       leshort 0x184     for DEC Alpha
.Ed
.Pp
Indirect and relative offsets can be combined:
.Bd -literal -offset indent
0             string  MZ
\*[Gt]0x18         leshort \*[Lt]0x40
\*[Gt]\*[Gt](4.s*512)   leshort !0x014c MZ executable (MS-DOS)
# if it's not COFF, go back 512 bytes and add the offset taken
# from byte 2/3, which is yet another way of finding the start
# of the extended executable
\*[Gt]\*[Gt]\*[Gt]\*[Am](2.s-514) string  LE      LE executable (MS Windows VxD driver)
.Ed
.Pp
Or the other way around:
.Bd -literal -offset indent
0                 string  MZ
\*[Gt]0x18             leshort \*[Gt]0x3f
\*[Gt]\*[Gt](0x3c.l)        string  LE\e0\e0  LE executable (MS-Windows)
# at offset 0x80 (-4, since relative offsets start at the end
# of the up-level match) inside the LE header, we find the absolute
# offset to the code area, where we look for a specific signature
\*[Gt]\*[Gt]\*[Gt](\*[Am]0x7c.l+0x26) string  UPX     \eb, UPX compressed
.Ed
.Pp
Or even both!
.Bd -literal -offset indent
0                string  MZ
\*[Gt]0x18            leshort \*[Gt]0x3f
\*[Gt]\*[Gt](0x3c.l)       string  LE\e0\e0 LE executable (MS-Windows)
# at offset 0x58 inside the LE header, we find the relative offset
# to a data area where we look for a specific signature
\*[Gt]\*[Gt]\*[Gt]\*[Am](\*[Am]0x54.l-3)  string  UNACE  \eb, ACE self-extracting archive
.Ed
.Pp
If you have to deal with offset/length pairs in your file, even the
second value in a parenthesized expression can be taken from the file itself,
using another set of parentheses.
Note that this additional indirect offset is always relative to the
start of the main indirect offset.
.Bd -literal -offset indent
0                 string       MZ
\*[Gt]0x18             leshort      \*[Gt]0x3f
\*[Gt]\*[Gt](0x3c.l)        string       PE\e0\e0 PE executable (MS-Windows)
# search for the PE section called ".idata"...
\*[Gt]\*[Gt]\*[Gt]\*[Am]0xf4          search/0x140 .idata
# ...and go to the end of it, calculated from start+length;
# these are located 14 and 10 bytes after the section name
\*[Gt]\*[Gt]\*[Gt]\*[Gt](\*[Am]0xe.l+(-4)) string       PK\e3\e4 \eb, ZIP self-extracting archive
.Ed
.Pp
If you have a list of known avalues at a particular continuation level,
and you want to provide a switch-like default case:
.Bd -literal -offset indent
# clear that continuation level match
\*[Gt]18	clear
\*[Gt]18	lelong	1	one
\*[Gt]18	lelong	2	two
\*[Gt]18	default	x
# print default match
\*[Gt]\*[Gt]18	lelong	x	unmatched 0x%x
.Ed
.Sh SEE ALSO
.Xr file __CSECTION__
\- the command that reads this file.
.Sh BUGS
The formats
.Dv long ,
.Dv belong ,
.Dv lelong ,
.Dv melong ,
.Dv short ,
.Dv beshort ,
and
.Dv leshort
do not depend on the length of the C data types
.Dv short
and
.Dv long
on the platform, even though the Single
.Ux
Specification implies that they do.  However, as OS X Mountain Lion has
passed the Single
.Ux
Specification validation suite, and supplies a version of
.Xr file __CSECTION__
in which they do not depend on the sizes of the C data types and that is
built for a 64-bit environment in which
.Dv long
is 8 bytes rather than 4 bytes, presumably the validation suite does not
test whether, for example
.Dv long
refers to an item with the same size as the C data type
.Dv long .
There should probably be
.Dv type
names
.Dv int8 ,
.Dv uint8 ,
.Dv int16 ,
.Dv uint16 ,
.Dv int32 ,
.Dv uint32 ,
.Dv int64 ,
and
.Dv uint64 ,
and specified-byte-order variants of them,
to make it clearer that those types have specified widths.
.\"
.\" From: guy@sun.uucp (Guy Harris)
.\" Newsgroups: net.bugs.usg
.\" Subject: /etc/magic's format isn't well documented
.\" Message-ID: <2752@sun.uucp>
.\" Date: 3 Sep 85 08:19:07 GMT
.\" Organization: Sun Microsystems, Inc.
.\" Lines: 136
.\"
.\" Here's a manual page for the format accepted by the "file" made by adding
.\" the changes I posted to the S5R2 version.
.\"
.\" Modified for Ian Darwin's version of the file command.