
Received May 8, 2018, accepted June 17, 2018, date of publication June 28, 2018, date of current version July 25, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2851237

PTfuzz: Guided Fuzzing With Processor
Trace Feedback
GEN ZHANG , XU ZHOU, YINGQI LUO , XUGANG WU, AND ERXUE MIN
College of Computer, National University of Defense Technology, Changsha 410073, China

Corresponding author: Xu Zhou (zhouxu@nudt.edu.cn)

This work was supported in part by the National Key Research and Development Program of China (2016YFB0200401), in part by the
Program for New Century Excellent Talents in University, in part by the National High-Level Personnel for Defense Technology
Program (2017-JCJQ-ZQ-013), and in part by the Hunan Province Science Foundation 2017RS3045.

ABSTRACT Greybox fuzzing, such as american fuzzy lop (AFL), is very efficient in finding software
vulnerability, which makes it the state-of-the-art fuzzing technology. Greybox fuzzing leverages the branch
information collected during program running as feedback to guide choosing seeds. Current greybox fuzzing
generally uses two kinds of methods to collect branch information: compile-time instrumentation (AFL) and
emulation [AFL extended with QEMU emulation (QAFL)]. Compile-time instrumentation is efficient, but
it does not support binary programs. Meanwhile, emulation supports binary programs, but its efficiency
is very low. In this paper, we propose a greybox fuzzing approach named PTfuzz, which leverages
hardware mechanism (Intel Processor Trace) to collect branch information. Our approach supports binary
programs, just like the emulation method, while it gains a comparable performance with the compile-time
instrumentation method. Our experiments show that PTfuzz can fuzz the original binary programs without
any modification, and we gain a 3× performance improvement compared to QAFL.

INDEX TERMS Feedback, greybox fuzzing, Intel PT, software security.

I. INTRODUCTION
Softwares on computers or smart phones have already
become part of our daily life, such as web browsers,
players and document processors. However, vulnerabilities
in software are still commonplace [1], putting individual
users or enterprise users at risk. As a consequence, researches
and studies on software security are on a rise.

Symbolic execution and fuzzing are the major two parts of
software testing and debugging techniques. Symbolic execu-
tion engines [2]–[5] are directly applied to source code and
can detecting vulnerabilities effectively. However, symbolic
execution triggers a large number of paths in the target pro-
gram andwill result in path explosion. In the contrast, fuzzing
avoids the risk of path explosion by exploring possible values
of general inputs. And fuzzing techniques can be classified
according to the knowledge acquired from program, and
they are white-box, grey-box and black-box fuzzing tech-
niques separately. White-box fuzzer can use traditional pro-
gram analysis techniques to uncover properties of the target,
which can be time-consuming. Meanwhile, black-box fuzzer
does not have any information of the target program at all.
Grey-box fuzzer tries to maintain the simplicity of black-box

while improving the effectiveness of fuzzers by adopting
additional information.

Moreover, traditional fuzzers are relatively out-of-date in
detecting bugs. Without any guidance, blind fuzzers and ran-
dom mutations of input seed are very unlikely to hit desired
branches in programs, leaving some vulnerabilities buried
deeply in the execution path, hard to be exposed. Greybox
fuzzing is an excellent extension of traditional fuzzing tech-
nique. It is an effective fuzzing attempt to analyze programs
without much overhead. Greybox fuzzers use lightweight
instrumentation or othermechanisms to provide program exe-
cution feedback, such as code coverage, for the main fuzzing
loop. As mentioned above, initial input seeds are mutated
to generate test cases to exercise the program paths. For
example, in fuzzers which utilize code coverage feedback, if a
certain test case reaches a new path, the fuzzer will retain it
as a new input seed for a continuous fuzzing loop, generating
even more seeds.

Recent researches on greybox fuzzing technique have
attracted much attention. American Fuzzy Lop (AFL) is a
pioneer work in this field [6]. It adopts simple but rock-
solid compile-time instrumentation to provide code coverage

37302
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-7709-0751
https://orcid.org/0000-0001-9449-183X
https://orcid.org/0000-0002-1972-6608


G. Zhang et al.: PTfuzz: Guided Fuzzing With Processor Trace Feedback

feedback information. Meanwhile, Böhme et al. [7] intro-
duced AFLFast. It made improvement on the fuzzing
schedule of AFL and exposed 6 CVEs. Furthermore,
Rawat et al. [8] presented an application-aware fuzzer:
VUzzer. And later AFL was added with emulation back-
end of QEMU to support binary-only fuzzing. Following
AFL QEMU mode, Hertz and Newsham [9] proposed Tri-
forceAFL. It uses QEMU full-system emulation to fuzz
operating systems.

However, recent works about greybox fuzzing have some
common limitations. We can list three drawbacks of previous
works as follows:

• No binary-only fuzzing support. Greybox fuzzers like
AFL, AFLFast and VUzzer all rely on source code of
target programs. AFL and AFLFast use bitmap (more
information about bitmap is provided in Section II-A)
to trace basic block transitions and code coverage. Each
basic block has a randomly assigned id from compile-
time instrumentation. And this kind of instrumenta-
tion CANNOT be done without source code. The same
goes for VUzzer, because it analyzes programs with
control- and data-flow features from static and dynamic
analysis. VUzzer is a typical application-aware fuzzing
technique.
Fuzzers without binary-only support cannot be
adopted to situations where compile-time instrumenta-
tion or source code is unavailable. Unfortunately, many
software vendors prefer not to provide source code of
their softwares. This makes fuzzers without binary-only
support valueless in detecting vulnerabilities and bugs.

• Slow feedback mechanism. In order to solve the
problem of dependence on compile-time instrumen-
tation and source code, several feedback mecha-
nisms such as dynamic binary instrumentation (Intel
PIN [10]), static rewriting (AFL-dyninst [11]), and
emulation (QEMU [12]) are introduced in fuzzing.
As we have mentioned, AFL is extended with QEMU
emulation (we refer it as QAFL in this paper). Later
works such as TriforceAFL, also adopt QEMU to
fuzz operating systems. However, Zalewski [13] of
AFL pointed out that the usual performance cost
of QEMU in fuzzing is 2-5x. The reason for such
cost is out of our research scope in this paper.
Definitely, such performance overhead due to slow feed-
back mechanism is intolerable in our fuzzing prac-
tice. There is an urgent desire to improve these slow
mechanisms.

• Inaccurate coverage feedback. As mentioned above,
greybox fuzzers like AFL and AFLFast use bitmap to
trace basic block transitions and measure code coverage.
Each byte of the bitmap represents hit count of a specific
edge (e.g. from A to B). The id of block A and B is
randomly assigned through run-time instrumentation.
A hash value for transition from block A to block B
is calculated, used as the key in the bitmap, which is
(A ⊕ B)%BITMAP_SIZE (⊕ means XOR operation).

However, hash collision may happen in this scheme.
Let us assume that there is a transition edge from A to
B and another edge from C to D. When id of A and C is
randomly assigned the same value, and B and D is also
the same, these two different block transitions will be
considered the same, which we call collision or overlap.
In this situation, if transition from A to B is not new,
and C to D is a new path that has never been hit before,
test cases which can trigger transition C to D will not be
saved as a new seed. So the fuzzing loop may lose some
important seeds, may be incomplete and cannot reach
deep paths in programs. Moreover, AFL uses a small
bitmap (64KB), so that it can reside in cache to improve
performance. The number of edges in a program can be
very large, compared to the 64KB bitmap, so the colli-
sion ratio may be relatively high. More discussion about
branch collision or overlap can be found at Section II-A.

In this paper, to handle the above drawbacks of previous
greybox fuzzing techniques, we propose PTfuzz, which is an
improved fuzzer guided with Intel Processor Trace feedback.
Intel PT [14] is a new feature of Intel processors. It can expose
an accurate and detailed trace of program control flow infor-
mation, such as conditional jump and unconditional jump.
Particularly, PT can trace accurate address of every basic
block. Thus in PTfuzz, following the idea of AFL, we use this
feature of PT to measure transitions between basic blocks,
and provide accurate coverage feedback information for the
fuzzing loop. Meanwhile, PTfuzz is capable of fuzzing any
binary-only softwares, because we directly grab execution
information from the processor and do not depend on any
source code at all. We further show the performance overhead
of PTfuzz in Section V. Our experiments demonstrate that PT
is a much faster feedback mechanism than previous works
like QAFL and TriforceAFL.

The main contribution of this paper is summarized as
follows:

• Binary-only fuzzing.We propose a new greybox fuzzer
to fuzz any binary-only softwares and do not need
any source code. In situations where source code is
unavailable, compile-time instrumentation and thorough
program analysis is impossible, and fuzzers like AFL,
AFLFast and VUzzer will be of no use. Our approach
can gracefully handle these situations and fuzz binaries
as usual.

• Fast feedback mechanism.We introduce a much faster
feedback mechanism. As mentioned above, though pre-
vious works tried hard to solve the problem of source
code reliance, they all suffer from considerable perfor-
mance overhead, especially QAFL and TriforceAFL.
We utilize fast hardware feedback directly from CPU,
and deal with binary-only fuzzing in a much faster way
than QAFL. The performance overhead of our fuzzer is
much smaller than QAFL according to our experiments.

• Accurate coverage feedback.We propose a more accu-
rate measurement for code coverage feedback. Compile-
time instrumentation and random id assignment of basic

VOLUME 6, 2018 37303



G. Zhang et al.: PTfuzz: Guided Fuzzing With Processor Trace Feedback

blocks will measure code coverage inaccurately. We use
actual run-time addresses of basic blocks to trace transi-
tions between basic blocks and can provide real control
flow information of running code.

• PTfuzz. We implement a prototype called PTfuzz
based on these insights (https://github.com/hunter-
ht-2018/ptfuzzer). And our experiments show that
PTfuzz can deal with binary-only fuzzing quickly and
accurately.

II. BACKGROUND
A. BITMAP
1) DEFINITION OF BITMAP
As mentioned above, greybox fuzzers like AFL, AFL and
Syzkaller utilize code coverage feedback to decide whether
a test case should be saved as a new seed or discarded. If a
test case exercises a new program path, it will be saved as a
seed to generate more test cases. But how to decide whether
a test case hits a new path or not? There are several choices.
Total block (TBL), new block (NBL), total branch (TBR) and
new branch (NBR) coverage. (In this paper, branch and basic
block transition are the same thing. ) Total indicates the whole
number of hit blocks or branches, and new indicates that new
blocks or branches are desired. For example, in TBL, if test
case T1 hits basic block A, and T2 hits blocks A and B. Then
we can decide that T2 exercises a new path. In NBL, if T3 hits
basic block A, and T4 hits blocks B. Then we can decide that
T4 exercises a new path. However, T4 will not be considered
as exercising a new path in TBL, because the number of hit
blocks of T3 and T4 is the same. The same goes for TBR
and NBR.

Zalewski [6] of AFL conducted experiments on the 4meth-
ods and found out that NBR has the best performance. So in
AFL, if a test case hits a new branch, it is considered as
exercising a new path and will be saved as a seed. And every
hit branch is recorded in a specific memory space called
bitmap. For example, if there is a branch from A to B, AFL
first reads the value in bitmap[(A⊕B)%BITMAP_SIZE] to see
if it is 0, and then the value is added by 1. So by simply reading
the bitmap, which is initially set to 0s, AFL knows whether a
hit branch is new or not and decides to save or discard a test
case.

2) WHAT DO VALUES IN BITMAP INDICATE?
Moreover, the number of hit branches recorded in bitmap
is a useful indicator to compare code coverage of differ-
ent fuzzing techniques [15]. In other words, the more hit
branches, the higher code coverage. However, Zalewski [6]
himself claimed that, in AFL the number of colliding or over-
lapping branches is 14% when there are 20,00 hit branches in
total, and 30%when 50,000. So the indicator can be relatively
low for AFL and AFLFast because of collision and overlap of
branches. Later experiments in Section V will also demon-
strate that AFL has a low value of hit branches. So we can
get the conclusion that, fuzzers like AFL and AFLFast have

low code coverage because of inaccurate feedback. And they
aren’t able to expose deeply buried bugs and vulnerabilities
in programs.

B. FEEDBACK IN GREYBOX FUZZING
In this section, we will discuss previous greybox fuzzing
techniques in detail. We will make classifications according
to feedback mechanism adopted in each fuzzer and point out
some common limitations. These limitations are the driving
force for us to propose our PTfuzz.

TABLE 1. Conclusion of various feedback mechanism.

For greybox fuzzers, built-in feedback mechanism is the
key factor to decide fuzzing performance. We conclude var-
ious feedback mechanisms in TABLE 1 and discussion on
them is as following.

• Compile-time instrumentation is an approach to com-
pile source code and instrument what we need into
binaries with special compilers. Previous works such
as Vulcan [16], alto [17] and Diablo [18] are leading
works in this field. Fuzzers like AFL, AFLFast and
Syzkaller [19] adopt compile-time instrumentation to
utilize their feedback mechanism. It is relatively fast and
stable, but the drawback of compile-time instrumenta-
tion is also obvious. As mentioned above, they provide
code coverage feedback to the main fuzzing loop by
recording transitions between basic blocks. However,
the address of a basic block is a randomly assigned
value, not the exact address at run time. This is why
we claim that it is not an accurate feedback mechanism.
Furthermore, source code is needed to compile target
programs. So binary-only fuzzing is not available in
compile-time instrumentation.

• Dynamic binary instrumentation can analyze the behav-
ior of binaries at run time through instrumentation
code. The instrumentation code works as part of
the original code after being injected. PIN [10] and
DynamoRIO [20] are the most famous works. Utiliza-
tion of this kind of feedback mechanism in fuzzing
can handle binary-only fuzzing and is accurate because

37304 VOLUME 6, 2018



G. Zhang et al.: PTfuzz: Guided Fuzzing With Processor Trace Feedback

of run-time instrumentation. But the biggest problem
of dynamic binary instrumentation is the considerable
overhead. It is slower than compile-time instrumentation
in fuzzing jobs.

• Static rewriting instruments the binary by inserting call-
backs for each basic block and an initialization callback
in program entry point [11]. AFL-dyninst uses static
rewriting and adopts this technique to fuzz binaries.
So static rewriting can handle binary-only fuzzing tasks
and can be relatively fast. However, static rewriting has
a main drawback that it is unstable and it is fraught with
peril [13].

• Emulation like QEMU emulates CPUs through dynamic
binary translation, and it is capable of both user-mode
and system emulation. And fuzzers are able to run user-
level processes and capture program execution flow
with the help of QEMU. QAFL and TriforceAFL uti-
lize QEMU and they can fuzz binary-only softwares
with accurate run-time feedback. However, due to the
architecture of QEMU, these approaches suffer from
expensive overhead at 2-5x, compared to no QEMU exe-
cution. This is an intolerable overhead to fuzz binaries
and cannot be applied to real practice.

• Intel Branch Trace Store is a hardware feature of proces-
sors. BTS mechanism enables users to save the branch
trace in a specified buffer. It can also provide run-
time information without depending on any source code.
BTS is similar to PT but setting the BTS flag in CPU
can greatly reduce the performance of processors [21].
In other words, we cannot utilize fuzzers with such large
execution overhead.

• Intel Processor Trace is also a hardware feature of pro-
cessors, but it is much more advanced than BTS. PT
is capable of accurately tracing program control flow
information and we can record basic block transitions
based on it. Most importantly, as is shown in Table 1, PT
can finish the task without much performance overhead.

In conclusion, fuzzers extended with Intel Processor Trace
feedback is able to complete the task of accurately recording
basic block transitions in binary-only fuzzing. Moreover,
it can be very fast. Based on PT, our PTfuzz successfully
handles the problems of previous works.

C. INTEL PROCESSOR TRACE
In this section, we will briefly introduce Intel Processor
Trace. With Broadwell architecture and new generation of
Core processors, Intel has proposed a new hardware fea-
ture called Processor Trace [14], which is an extension of
Intel Architecture that captures tracing data about program
execution. Intel PT will cause only minimal performance
overhead to the program being traced with well-designed
hardware facilities. Previous hardware features such as Intel
Last Branch Record also performs program tracing, but its
output is stored in special registers, instead of main memory.
Intel PT utilizes memory space to store tracing data, so con-
tinuous PT tracing is only limited to the size of main memory.

Thuswe are able to perform continuous fuzzing jobs and trace
program execution with this output feature of PT.

Specifically, the output of PT is collected in the format
of data packets [21]. Packets can be classified into 2 types
according to their functionality: basic execution information
packet and control flow information packet. Packet Stream
Boundary (PSB), Time-Stamp Counter (TSC) and other
relevant packets are basic execution information, which
demonstrate general program running status. And in initial
implementation of PT, control flow tracing packets are pro-
vided to be processed by a software decoder. Control flow
information includes time, program flow and other informa-
tion during run time.

Basic block is a continuous code section with no
jumps or branches. In this paper, in order to capture tran-
sitions between basic blocks, we need to concentrate on
program flow information, such as jump targets, and branch
taken/not taken. And we need a specially designed decoder
to decode program flow tracing data in memory space. Intel
PT specifies instructions that can change program flow as
Change of Flow Instructions (COFI). Three types of COFI
instructions are introduced: Direct transfer COFI, Indirect
transfer COFI and Far transfer COFI.

Moreover, Intel PT introduces 4 specific packets to trace
COFI instructions:

• Taken Not-Taken (TNT) packet. A specific bit in TNT
packet can indicate whether a branch is taken or not
in conditional jumps. So it is used to trace direction of
conditional branches.

• Target IP (TIP) packet. TIP records the target instruction
pointer (IP) of jump or transfer instructions. IP value is
stored in specific bits in this packet. In detail, TIP can
be classified into TIP, TIP.PGE, TIP.PGD and TIP.FUP
according to different application scenarios.

• Flow Update Packet (FUP). When asynchronous events
such as interrupts or traps happen, we need FUP to pro-
vide source IP addresses, because TIP is out of function
in these events.

• MODE packet. MODE provides important program
execution information and it has a wide range of formats
to indicate the execution mode.

So with the help of TNT, TIP and FUP packets, we are
able to write a decoder to capture basic block transitions
in program execution. More specifically, we need to record
addresses of basic blocks. And when COFI instruction take
place, we need to record control flow transitions between
basic blocks in the bitmap. For example, when there is an
indirect jump instruction (e.g. JMP (FF/4), CALL (FF/2))
from A to B, decoder can recognize this belongs to
TIP packets and read the IP address in it. Then bitmap
[(A⊕ B)%BITMAP_SIZE] is incremented by 1 and we com-
plete recording a transition.

D. SYMBOLIC EXECUTION AND FUZZING
Vulnerabilities in software are still common place, putting
individual users or enterprise users at risk. In order to detect

VOLUME 6, 2018 37305



G. Zhang et al.: PTfuzz: Guided Fuzzing With Processor Trace Feedback

FIGURE 1. High level overview of our model.

vulnerabilities and bugs in softwares, we can examine the
source code and match a certain known pattern, and this is
a static analysis approach. However, many classes of vulner-
abilities such as functional correctness bugs, are difficult to
find without executing a piece of code. And exposing bugs
with code execution is called dynamic approach. With regard
to the problem of code executing, there has been much debate
about symbolic execution versus more lightweight fuzzing
technique [7].

Symbolic execution and fuzzing are the major two parts of
software testing and debugging techniques.

Symbolic execution engines can be directly applied to
source code. They use program analysis to interpret an appli-
cation, model user input with symbolic variables, track con-
straints produced by conditional jumps and adopt constraint
solving to create interesting inputs to cover specific program
paths. Symbolic execution engines such as Veritesting [22],
Firmalice [23], under-constrained execution [24] catch wide
attention these days. Meanwhile, with the improvement of
computing power recently, concolic execution (also known
as dynamic symbolic execution) has risen in popularity. And
there comes plenty of tools with high performance: EXE [2],
KLEE [3], Mayhem [4] and S2E [5]. Despite their promising
characteristics, both symbolic concolic execution suffer from
the well-known path explosion problem due to the inner
working structure of symbolic execution.

Moreover, symbolic execution tools are able to automat-
ically analyze programs with symbolic values and a huge
amount of constraint solving [3]. It triggers a large number of
paths in the target program and will result in path explosion.
Meanwhile fuzzing is an efficient testing technique to expose
bugs and vulnerabilities. Given an initial input seed, a bunch
of new test cases can be generated by simple mutations,
in order to exercise and cover as much program paths as pos-
sible. Today most vulnerabilities are exposed by particularly
lightweight fuzzers that do not leverage intensive program
analysis [6].

In the contrast, fuzzing avoids the risk of path explo-
sion by exploring possible values of general inputs, trying
to catch specific values and drive execution flow between

program compartments. Existing fuzzers such as Dows-
ing [25], BROG [26], Flayer [27] and BuzzFuzz [28], lack
precise information makes fuzzing unable to solve differ-
ent conditional jumps and deeper execution in programs.
Combining both symbolic execution and fuzzing, Driller [1]
proposed a hybrid approach to solve the above issues.

Meanwhile, fuzzing techniques can be classified according
to the knowledge acquired from program. Typically, white-
box fuzzer have full information of the target program and
can use traditional program analysis techniques to uncover
properties of the target. White-box fuzzers including Smart-
Fuzz [29], BuzzFuzz [28], Vuzzer [8] and TaintScope [30]
achieve expected performance and can be applied to real-
world scenarios. Grey-box fuzzer uses specific feedback
information to enhancing the process of ‘‘blind’’ fuzzing.
This kind of fuzzing tries to maintain the simplicity of black-
box while improving the effectiveness of fuzzers by adopting
additional information. AFL [31] and AFLFast [7] are the
most successful representation of grey-box fuzzers. Mean-
while, black-box fuzzer does not have any information of the
target program at all. Recently new ideas are put into black-
box fuzzers and Radamsa [32], zzuf [33] and peach [34] did
remarkable work in this field.

This kind of classification of fuzzers are based on the inter-
action with the target program, while it can also be classified
into non-kernel and kernel fuzzers depending on whether it
can be used to fuzz kernels [19].

III. MODEL OVERVIEW
In this section, we will introduce our model and the fuzzing
steps of PTfuzz. As a greybox fuzzer, PTfuzz follows the
fuzzing architecture of AFL. It starts with initial seed files
and tries to generate new seeds to exercise as much as pro-
gram paths as possible. As shown in Fig. 1, PTfuzz mainly
contains two relevant parts: the main fuzzing loop and the PT
infrastructure.

The main fuzzing loop works as a parent thread and its jobs
include:

• Configuration. This part includes screen display ini-
tialization, locating input seed files, signal setup, timer

37306 VOLUME 6, 2018



G. Zhang et al.: PTfuzz: Guided Fuzzing With Processor Trace Feedback

setup and other configurations. This configuration step
is essential for later fuzzing steps.

• Pre-build COFI map and write MSR registers. The tar-
get binary will be loaded and instructions are dumped
to construct COFI map mentioned in Section II-C for
decoding purpose. And specific MSR registers are writ-
ten to set up ip filtering for PT process.

• Load seeds. Input seeds are listed sequentially in a
queue. Every time when execution of last seed is fin-
ished, next seed in the queue is automatically loaded for
mutation.

• Mutation. Mutation means changing certain parts of a
seed to generate several test cases. And it can be classi-
fied into deterministic and non-deterministic mutation.
Deterministic mutation includes: sequential bit flips
with different lengths and stepovers, adding or subtract-
ing small numbers and inserting known integers. And
non-deterministic mutation includes stacked bit flips,
inserting, deleting and splicing. For example, there is a
seed and its content is ‘‘10011’’. A program parser needs
to read ‘‘10010’’ to execute following code. Obviously,
this seed cannot pass the program parser. When bit flip
on the first bit is performed, this seed turns into a test
case ‘‘10010’’. And this test case passes the program
parser and following code is executed.

• Execution. After mutations or test cases are generated,
they are taken as input for program execution.

• Fork. At the beginning of execution, a child thread is
called up to perform as Processor Trace infrastructure
by fork(). And this child thread is reaped after execution
is finished, and decoded tracing data will be sent to the
parent thread.

• Save or discard. After execution of a test case is over,
the main fuzzing loop needs to decide whether to
save or discard this one based on the information pro-
vided by the PT infrastructure. Saved test cases will be
put into the queue of seeds for continuous fuzzing.

• Display and report. When fuzzing is running, screen
display is necessary to monitor the fuzzing status. Addi-
tionally, after fuzzing is over, a detailed report about
all kinds of running information is created by the main
fuzzing loop.

As mentioned above, the Processor Trace infrastructure
is created by the main fuzzing loop through fork(). And it
mainly completes these tasks:

• Enable PT. In order to perform continuous tracing of
program execution, Processor Trace needs to be enabled.
After fork() operation, the PT infrastructure enables PT
at the beginning of program execution.

• Record tracing data. After PT is enabled, it will captures
program execution information non-stop. And the PT
infrastructure specifies a certain memory space to store
tracing data after enabling PT. Thus PT can write tracing
data in this specific space.

• Decode tracing data. Our purpose is to find basic
block transitions in program execution, so the

PT infrastructure decodes the raw tracing data and
captures TNT, TIP and FUP packets as described in
Section II-C and other relevant information. And basic
block transitions are written into the bitmap so the main
fuzzing loop can access it and make decisions.

• Disable PT. After execution is over, PT is disabled and
nothing will be recorded by PT.

And then we will describe running steps of our model
in detail. As shown in Fig. 2, specifically, PTfuzz works as
follows:

• (1) Themain fuzzing loop configures screen display ini-
tialization, locating input seed files, signal setup, timer
setup and other related events.

• (2) Target binary is loaded into memory and instructions
in text section are dumped to build COFImap. AndMSR
registers in CPU are modified that ip filtering is set up.

• (3) One seed in the seed queue is loaded, ready for
mutation.

• (4) This seed is given to mutation engine to perform
deterministic and non-deterministic mutations, generat-
ing several test cases.

• (5) Test cases from mutation are taken as input into the
target program for execution one by one.

• (6) At the beginning of execution, the main fuzzing
loop calls up a child thread by fork(), so Processor Trace
infrastructure is alive.

• (7) PT infrastructure enables PT right after it is forked.
• (8) PT tracing data are recorded into a specific memory
space.

• (9) The tracing data is decoded to expose basic block
transitions and bitmap is updated so the main fuzzing
loop can access it to make decisions.

• (10) PT is disabled after execution is finished.
• (11) This child process is reaped so PT infrastructure is
not alive.

• (12) If there is a new basic block transition triggered by
a test case according to PT feedback, the main fuzzing
loop will save this particular test case and put it in the
queue of seeds; if no new transition is detected, this test
case will be discarded.

After step (12), the main fuzzing loop loads the next seed
in the queue and starts next loop of fuzzing. PTfuzz requires
user provided initial seeds to start with. And we won’t discuss
how to select initial seeds in this paper because it is partly out
of our research scope. Moreover, PTfuzz can report program
crashes, execution speed and number of hit branches in time.
At last, PTfuzz ends with user’s halt operation or pre-set
running time.

IV. IMPLEMENTATION
Based on our model overview discussed in Section III,
we implement our prototype PTfuzz. We will describe some
details about our implementation in the following.

• Building COFI map. As described in Section II-C,
Change of Flow Instruction (COFI) is control flow
sequence in Processor Trace. When target program is

VOLUME 6, 2018 37307



G. Zhang et al.: PTfuzz: Guided Fuzzing With Processor Trace Feedback

FIGURE 2. Detail steps of our model.

loaded, we can dump it to extract all the instructions in
text section and the range of ip address. In our imple-
mentation, we adopt Python−CLE1 to load the binaries
and capstone2 to dump the text section. Decoding PT
trace packets requires COFI map, and by pre-building it,
PTfuzz can save considerable decoding time and greatly
reduce execution overhead.

• Writing MSRs and setting up ip filtering. As described
in Intel’s programming guide [21], we can filter PT
packets generation by setting up certain MSR regis-
ters. In PTfuzz, we only need to decode PT packets in
the ip range of the target binary, not including some
library or system calls. So we follow msr − tools 3 to
write MSR registers and limit PT packets generation to
the target binary. By doing this, the decoding of PTfuzz
can escape a huge number of irrelevant PT packets and
gain a distinct performance improvement.

• Enabling and disabling PT in fuzzing. As described in
Intel’s System Programming Guide, we have to set a
specific bit of model specific register (MSR) to 1 to
enable Intel PT [21]. After enabling PT, it will trace
any execution information in CPUs. However, setting
MSR cannot be done directly by user-level compart-
ments. So in PTfuzz, we utilize system call ioctl()
to perform this operation of setting MSR. In details,
themain fuzzing loopwill call up a child thread to enable
PT with ioctl() and start tracing program execution.

1https://github.com/angr/cle
2http://www.capstone-engine.org/
3https://01.org/zh/msr-tools?langredirect=1

The child thread will then disable PT by ioctl() after
fuzzing iteration is over.

• Processor Trace output. Previous works about PT such
as Simple-PT [35], cannot perform continuous tracing
because they store tracing information in files. Writing
files could be slow and is not capable of in-time inter-
action with the main fuzzing loop. So in PTfuzz we
use mmap_page feature in perf_event [36]. This feature
configures a specificmemory space to store tracing data.
And PTfuzz records tracing information in this memory.
Accessing memory can be much faster than files and
interaction with the main fuzzing loop is timely.

• Decoding PT information. After PT information is
recorded in memory, we need to decode it to find basic
block transitions. And Intel has proposed its own PT
Decoder Library [37]. However, it is a general purpose
decoder and does not fit our demand well, because it
does not provide the API to trace basic block transitions.
So we write a new decoder for PTfuzz based on the
System Programming Guide [21]. Our decoder is a spe-
cial purpose one that only concentrates on basic block
transitions in program execution. It accesses information
in our specified memory space and decodes tracing data
to find what the main fuzzing loop needs.

V. EXPERIMENT
In this section, we will discuss experiment results of our
PTfuzz compared toAFL andQAFL.AFL is an extraordinary
work in application-aware fuzzers with compile-time instru-
mentation. Comparison to it will demonstrate that PTfuzz is

37308 VOLUME 6, 2018



G. Zhang et al.: PTfuzz: Guided Fuzzing With Processor Trace Feedback

capable of binary-only fuzzing and has a relatively higher
code coverage than AFL. And QAFL represents fuzzing tech-
niques with binary-only support. By comparing to QAFL,
we can show that PTfuzz is relatively faster in fuzzing tasks.

TABLE 2. Input parameter for target programs.

Experimental Setup: The experiments are conducted
on a desktop with Intel Core i7 3.4GHz 8 Core
CPU and 8GB RAM running Ubuntu 16.04. And
our target programs are chosen intentionally. We have
cxxfilt, nm, objdump, readelf , size and strings from GNU
Binutils [38] and base64,md5sum, uniq,who from LAVA-M
data set. Binutils are a widely used collection of binary tools.
And we have image processing tools gif 2tiff and tiffinfo from
TIFF [39]. Moreover, mpg321 [40] and tcpdump [40] are
included. Thus we have 10 target programs to conduct exper-
iments in total. And TABLE 2 shows our input parameter for
these programs. For each of the programs, we individually
fuzz it with PTfuzz, AFL and QAFL for 24 hours. Moreover,
we record 3 indicators for each experiment:

• Crashes. This is the number of unique crashes when
executing the programs. And crashes result from unique
test cases that cause the tested program to receive a fatal
signal (e.g., SIGSEGV, SIGILL, SIGABRT ). This is a
widely-used indicator in [7], [8], [41], and [42] to decide
whether a fuzzer has good fuzzing performance or not.

• Speed. We measure execution speed of each fuzzer in
exe/s to demonstrate fuzzing overhead. This indicator
means the number of executed test cases each second.

• Branches. As mentioned in Section II-A, the number
of hit branches (basic block transitions) is an impor-
tant indicator to measure code coverage for fuzzers.

The more branches, the higher code coverage. And cov-
ering more code of programs will definitely lead to more
deeply buried vulnerabilities and bugs.

And experiment results and detailed discussion are as
following.

A. SOURCE CODE AVAILABLE FUZZING
In this section, we will compare the experiment results for
PTfuzz and AFL in details. As discussed above, before we
can fuzz our programs with AFL, we have to compile the
programs with AFL’s own special compiler called afl-clang-
fast . The compiler instruments randomly assigned values as
addresses for basic blocks. But our PTfuzz doesn’t need to
go through these steps. So the 10 programs are instrumented-
programs when running on AFL, and not on PTfuzz.

TABLE 3. Source code available fuzzing.

As shown in TABLE 3, PTfuzz finds out more unique
crashes than AFL in 7 out of 10 target programs (cxxfilt,
nm, size, gif2tiff, tiffinfo, mpg321 and tcpdump), and the
same number of crashes in 2 programs (readelf and strings).
However, as for executed test cases per second, the speed of
PTfuzz is about 7% slower than AFL and this is due to our
implementation of PT decoder. (We discuss this problem in
detail and provide future work about this in Section VI. ) But
an overhead of 7% is relatively acceptable in fuzzing tasks.
In hit branches, PTfuzz has more branches than AFL in all
the 10 programs. And this indicator also demonstrates that
PTfuzz can cover more code and paths in programs and is
able to expose deeper bugs.

Moreover, when the input files and parameter are all the
same with PTfuzz, AFL is not able to normally fuzz gif2tiff
and only results in ‘‘Odd, check syntax’’ on the screen.
According to documents of AFL [43], this information indi-
cates that fuzzing in AFL goes wrong and we should stop
fuzzing immediately. We assume that this problem is due
to AFL’s instrumentation when compiling gif2tiff. AFL’s
special compiler afl-clang-fast may destroy some internal
features of the program and we are not able to fuzz it with

VOLUME 6, 2018 37309



G. Zhang et al.: PTfuzz: Guided Fuzzing With Processor Trace Feedback

TABLE 4. Binary-only fuzzing.

AFL. More importantly, this is a solid prove that AFL cannot
be used in every source code available fuzzing tasks, but our
PTfuzz can handle this problem well.

Comparison between PTfuzz and AFL is a strong evi-
dence that PTfuzz is able to discover more program crashes,
achieve higher code coverage and is more effective in expos-
ing vulnerabilities. The primary reason for this result is
that we overcome the internal drawback of AFL’s compile-
time instrumentation and utilize actual run-time addresses
for basic blocks, instead of randomly assigned values. And
PTfuzz is capable of accurately capturing basic block tran-
sitions in program execution and providing useful feedback
for the main fuzzing loop. In conclusion, PTfuzz outper-
forms AFL in crash-exposing ability and code coverage,
with a 7% overhead, which can be eliminated with code
optimization.

B. BINARY-ONLY FUZZING
In this section, we conduct experiments on binaries of the
10 programs in PTfuzz, AFL andQAFL,without source code.
And we still list 3 indicators, crashes, speed and branches,
in TABLE 4. These binaries are compiled with ordinary gcc
compiler by other computers and we only have 10 binaries in
our desktop, without any source code.

First, we will look into the comparison between PTfuzz
and AFL in this table. It is not the same as experiments
when source code is available because we can’t compile the
10 programs with AFL’s special compiler at all. As we can
see, AFL cannot do anything in these binary-only fuzzing
jobs and it is valueless when source code is unavailable.
However, our PTfuzz can fuzz all these binaries without
exception. In binary-only fuzzing scenarios like this, PTfuzz
definitely outperforms AFL.

Then we will examine the comparison between PTfuzz and
QAFL. Generally, PTfuzz exposes more crashes than QAFL

in 8 out of 10 programs (cxxfilt, nm, objdump, size, gif2tiff,
tiffinfo, mpg321 and tcpdump), and the same crashes in 2 pro-
grams (readelf and strings). As for execution speed, PTfuzz
is faster than QAFL in all 10 experiments. Especially for
objdump, PTfuzz is about 24x faster than QAFL in execution.
And PTfuzz hit more branches than QAFL in 10 programs,
which means PTfuzz always has a higher code coverage in
fuzzing than QAFL.

In addition, when fuzzing mpg321 and tcpdump, QAFL
gets stuck after fork server is up. (Starting fork server is
a basic step in AFL and QAFL fuzzing.) We assume this
problem is due to slow executing speed of QAFL and it cannot
continue to later steps. However, our PTfuzz has not faced this
situation in fuzzing jobs. This problem also proves the slow
execution of QAFL.

So by comparing to AFL and QAFL in binary-only
fuzzing, we can find out that PTfuzz outperforms them in
many ways. PTfuzz is capable of fuzzing binaries where AFL
cannot, because PTfuzz doesn’t need to specially compile
target programs like AFL does. Moreover, PTfuzz runs much
faster than QAFL, exposes more crashes and covers more
program paths. The internal reason for this is that we aban-
don QEMU emulation adopted in QAFL and concentrate on
Processor Trace, which is capable of fuzzing binaries fast
and accurately. So in binary-only fuzzing tasks, PTfuzz earns
much more potential to discover deeper bugs and vulnerabil-
ities than AFL and QAFL.

C. EXPERIMENTS ON LAVA-M DATA SET
In this section, wewill compare experiment results of PTfuzz,
AFL and QAFL on LAVA-M data set. LAVA is a technique
to produce ground-truth corpora by injecting real bugs into
target programs [42]. The authors created LAVA-M data
set by injecting 4 commonly seen GNU programs: base64,
md5sum, uniq and who. Recent works, such as VUzzer [8],

37310 VOLUME 6, 2018



G. Zhang et al.: PTfuzz: Guided Fuzzing With Processor Trace Feedback

TABLE 5. Experiments on LAVA-M data set.

tend to use LAVA-M data set as benchmarks to compare
performance of different fuzzers. We conduct experiments on
base64,md5sum, uniq andwho separately and the experiment
results are shown in Table 5. Specifically, in the table, target
programs are compile-time instrumented for AFL because
AFL cannot fuzz raw binaries, and not instrumented for
PTfuzz and QAFL.

As shown in the table, PTfuzz exposes more crashes than
AFL and QAFL in base64 and uniq. As for execution speed,
PTfuzz outperforms QAFL in all the target programs, but
slower than AFL, which is the same as previous experiments.
Moreover, PTfuzz is able to cover more edges than AFL and
QAFL in all experiments, which means that with accurate
coverage feedback, PTfuzz is able to fuzz the target programs
more precisely. In the experiment of md5sum, we could
not fuzz it in PTfuzz, AFL, and QAFL, because it crashed
on the first input without allowing the program to execute
more of other inputs. And the same phenomenon occurs
in VUzzer, so we mark ‘‘−’’ in the experiment results of
md5sum.

According to the table, PTfuzz performs poorly on finding
crashes in LAVA-M data set, the same goes for AFL and
QAFL. The reason for this is that bugs injected into LAVA-M
are all protected by conditional checks on values copied
from input against hardcoded magic bytes. Thus, without
static analysis tools, such as in VUzzer, PTfuzz cannot easily
recover the expected values used in the checks that guard the
injected bugs.

So in conclusion, we conduct experiments on widely used
benchmark LAVA-M data set in this section. By comparison
to AFL and QAFL, we can prove that PTfuzz has better
fuzzing performance in this situation. And our PTfuzz can
fuzz most of the target programs except md5sum, so we can
make the conclusion that PTfuzz can be scalable to most of
the fuzzing situations.

VI. DISCUSSION
A. LIMITATIONS
Although our PTfuzz has relatively better fuzzing perfor-
mance than AFL and QAFL, there are some limitations of
our approach.

• Hardware and OS requirement. Intel Processor Trace is
a new feature only after Intel Core processors (Broad-
well architecture), so PTfuzz cannot run on computer

with older version of Intel CPUs. Moreover, our imple-
mentation of Processor Trace output space (ToPA [21])
relies on a feature calledmmap_page in perf_event [36],
and this feature is only available after Kernel 4.1.x.
So PTfuzz needs a new version of kernel to run. But this
ToPA implementation problem can be solved by manu-
ally specifying a memory space as ToPA, and which is
totally the same as using mmap_page.

• Implementation of decoder. As shown in Section V,
PTfuzz is slower than AFL in fuzzing jobs. By analyzing
our code of PTfuzz, we find out that our decoder of
recorded Processor Trace information can be tremen-
dously accelerated by performing a pipeline-like decod-
ing. In other words, in our present implementation,
PTfuzz decodes tracing data of a test case in ToPA only
after the test case finishes its execution. So between
execution start and execution finish, decoder has nothing
to do. And we can improve our PTfuzz by performing
decoding when test case is executing, instead of after
execution finish.

• Only on Linux platform. Currently our PTfuzz can
only fuzz Linux programs due to our PT implementa-
tion relies on Linux system. However, Processor Trace
recently adds Windows support to help operation of PT
on Windows,4 So in the future we plan to transplant
PTfuzz to Windows platform and fuzz Windows appli-
cations in the same way.

VII. CONCLUSION
In this paper, we concentrate on greybox fuzzing to expose
bugs and vulnerabilities in softwares. Meanwhile we exam-
ine previous greybox fuzzers and find out some common
drawbacks of them. Some fuzzers cannot support binary-
only fuzzing, some has low code coverage and some suffer
from huge overhead. To address these limitations, we intro-
duce a greybox fuzzing technique assisted by Intel Processor
Trace technology and implement a prototype called PTfuzz.
We accurately record basic block transitions in program
execution with PT in a relatively fast execution speed, and
achieve higher code coverage than previous fuzzers. And
experiment results demonstrate that PTfuzz outperformsAFL
and QAFL in most of the 3 indicators, crashes, speed, and
branches. The result is a strong evidence that PTfuzz is much

4https://github.com/intelpt/WindowsIntelPT

VOLUME 6, 2018 37311



G. Zhang et al.: PTfuzz: Guided Fuzzing With Processor Trace Feedback

more effective in fuzzing jobs and is able to expose deeper
bugs and vulnerabilities in programs.

REFERENCES
[1] N. Stephens et al., ‘‘Driller: Augmenting fuzzing through selective

symbolic execution,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2016,
pp. 1–16.

[2] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler, ‘‘EXE:
Automatically generating inputs of death,’’ ACM Trans. Inf. Syst. Secur.,
vol. 12, no. 2, p. 10, 2008.

[3] C. Cadar et al., ‘‘KLEE: Unassisted and automatic generation of high-
coverage tests for complex systems programs,’’ inProc. OSDI, vol. 8, 2008,
pp. 209–224.

[4] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, ‘‘Unleashing may-
hem on binary code,’’ in Proc. IEEE Symp. Secur. Privacy, May 2012,
pp. 380–394.

[5] V. Chipounov, V. Kuznetsov, and G. Candea, ‘‘S2E: A platform for in-vivo
multi-path analysis of software systems,’’ in Proc. 16th Int. Conf. Archit.
Support Program. Lang. Oper. Syst., 2011, pp. 265–278.

[6] M. Zalewski. American Fuzzy Lop (AFL) Fuzzer-Technical Details.
Accessed: Jan. 1, 2018. [Online]. Available: http://lcamtuf.coredump.cx/
afl/technical_details.txt

[7] M. Böhme, V.-T. Pham, and A. Roychoudhury, ‘‘Coverage-based greybox
fuzzing asMarkov chain,’’ inProc. ACM SIGSACConf. Comput. Commun.
Secur., 2016, pp. 1032–1043.

[8] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
‘‘VUzzer: Application-aware evolutionary fuzzing,’’ in Proc. Netw.
Distrib. Syst. Secur. Symp. (NDSS), 2017, pp. 1–14.

[9] J. Hertz and T. Newsham. Project Triforce. Accessed: Jan. 1, 2018.
[Online]. Available: https://www.nccgroup.trust/us/about-us/newsroom-
and-events/blog/2016/june/project-triforce-run-afl-on-everything

[10] Intel Corporation. Intel PIN. Accessed: Jan. 1, 2018. [Online].
Available: https://software.intel.com/en-us/articles/pin-a-dynamic-
binary-instrumentation-tool

[11] Talos Vulndev et al. AFL-Dyninst. Accessed: Jan. 1, 2018. [Online]. Avail-
able: https://github.com/talos-vulndev/afl-dyninst

[12] P. Bonzini et al. Qemu. Accessed: Jan. 1, 2018. [Online]. Available:
https://www.qemu.org

[13] Michal Zalewski.Readme.QEMU. Accessed: Jan. 1, 2018. [Online]. Avail-
able: https://github.com/mirrorer/afl/blob/master/qemu_mode/README.
qemu

[14] Intel Corporation. Intel Processor Trace. Accessed: Jan. 1, 2018. [Online].
Available: https://software.intel.com/en-us/blogs/2013/09/18/processor-
tracing

[15] Michal Zalewski. AFL-Status_Screen.Txt. Accessed: Jan. 1, 2018.
[Online]. Available: http://lcamtuf.coredump.cx/afl/status_screen.txt

[16] A. Edwards, H. Vo, and A. Srivastava, ‘‘Vulcan: Binary transformation
in a distributed environment,’’ Microsoft Res., Redmond, WA, USA,
Tech. Rep. MSR-TR-2001-50, 2001.

[17] R. Muth, S. K. Debray, S. Watterson, and K. De Bosschere, ‘‘Alto: A link-
time optimizer for the Compaq Alpha,’’ Softw. Pract. Exper., vol. 31, no. 1,
pp. 67–101, 2001.

[18] B. De Sutter, B. De Bus, and K. De Bosschere, ‘‘Link-time binary rewriting
techniques for program compaction,’’ ACM Trans. Program. Lang. Syst.,
vol. 27, no. 5, pp. 882–945, 2005.

[19] Dmitry Vyukov. Syzkaller. Accessed: Jan. 1, 2018. [Online]. Available:
https://github.com/google/syzkaller

[20] D. Bruening and S. Amarasinghe, ‘‘Efficient, transparent, comprehensive
runtime codemanipulation,’’ Ph.D. dissertation, Dept. Elect. Eng. Comput.
Sci., Massachusetts Inst. Technol., Cambridge, MA, USA, 2004.

[21] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3, System Programming Guide.
Accessed: Jan. 1, 2018. [Online]. Available: https://software.intel.com
/sites/default/files/managed/a4/60/325384-sdm-vol-3abcd.pdf

[22] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, ‘‘Enhancing sym-
bolic execution with veritesting,’’ in Proc. Int. Conf. Softw. Eng., 2014,
pp. 1083–1094.

[23] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
‘‘Firmalice—Automatic detection of authentication bypass vulnerabilities
in binary firmware,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2015,
pp. 1–15.

[24] D. Engler and D. Dunbar, ‘‘Under-constrained execution: Making auto-
matic code destruction easy and scalable,’’ in Proc. Int. Symp. Softw. Test.
Anal., 2007, pp. 1–4.

[25] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, ‘‘Dowsing for
overflows: A guided fuzzer to find buffer boundary violations,’’ in Proc.
Usenix Conf. Secur., 2013, pp. 49–64.

[26] M. Neugschwandtner, P. M. Comparetti, I. Haller, and H. Bos,
‘‘The BORG: Nanoprobing binaries for buffer overreads,’’ in Proc. 5th
ACM Conf. Data Appl. Secur. Privacy, 2015, pp. 87–97.

[27] W. Drewry and T. Ormandy, ‘‘Flayer: Exposing application internals,’’ in
Proc. Usenix Workshop Offensive Technol., 2007, pp. 1–9.

[28] V. Ganesh, T. Leek, and M. Rinard, ‘‘Taint-based directed whitebox
fuzzing,’’ in Proc. IEEE Int. Conf. Softw. Eng., May 2009, pp. 474–484.

[29] D. Molnar, C. L. Xue, and D. Wagner, ‘‘Dynamic test generation to find
integer bugs in x86 binary linux programs,’’ in Proc. Conf. Usenix Secur.
Symp., 2009, pp. 67–82.

[30] T. Wang, T. Wei, G. Gu, and W. Zou, ‘‘TaintScope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection,’’ in
Proc. IEEE Symp. Secur. Privacy, May 2010, pp. 497–512.

[31] M. Zalewski. American Fuzzy Lop (AFL) Fuzzer. Accessed: Jan. 1, 2018.
[Online]. Available: http://lcamtuf.coredump.cx/afl

[32] Aki Helin. A General-Purpose Fuzzer. Accessed: Sep. 1, 2017. [Online].
Available: https://github.com/aoh/radamsa

[33] Sam Hocevar. ZZUF. Accessed: Sep. 1, 2017. [Online]. Available:
https://github.com/samhocevar/zzuf

[34] Peach Tech. Peach. Accessed: Sep. 1, 2017. [Online]. Available:
https://www.peach.tech

[35] Andi Kleen Simple-PT. Accessed: Jan. 1, 2018. [Online]. Available:
https://github.com/andikleen/simple-pt

[36] Frederic Weisbecker. Accessed: Jan. 1, 2018. [Online]. Available:
https://github.com/torvalds/linux/blob/master/include/linux/perf_event.h

[37] Markus Metzger Intel PT Decoder Library. Accessed: Jan. 1, 2018.
[Online]. Available: https://github.com/01org/processor-trace

[38] GNU. GNU Binutils. Accessed: Jan. 1, 2018. [Online]. Available:
http://www.gnu.org/software/binutils

[39] Frank Warmerdam TIFF. Accessed: Jan. 1, 2018. [Online]. Available:
http://www.remotesensing.org/libtiff

[40] Joe Drew. MPG321. Accessed: Jan. 1, 2018. [Online]. Available:
http://mpg321.sourceforge.net

[41] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, ‘‘Directed
greybox fuzzing,’’ in Proc. 24th ACM Conf. Comput. Commun.
Secur. (CCS), 2017, pp. 1–16.

[42] B. Dolan-Gavitt et al., ‘‘LAVA: Large-scale automated vulnerability addi-
tion,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2016, pp. 110–121.

[43] M. Zalewski. American Fuzzy Lop (AFL) README.
Accessed: Jan. 1, 2018. [Online]. Available: http://lcamtuf.coredump.cx/
afl/README.txt

GEN ZHANG was born in Chongqing, China,
in 1993. He received the bachelor’s degree major-
ing in computer science and software analysis
from the National University of Defense Tech-
nology, Changsha, China, in 2016, where he is
a currently pursuing the master’s degree with the
College of Computer.

He has authored two papers in ISCID 2017 and
ICSMO 2018. His current research interests are
fuzzing, software analysis, and binary analysis.

He received the Extraordinary Student Award from the College of Com-
puter, National University of Defense Technology, for his good performance
in 2015.

37312 VOLUME 6, 2018



G. Zhang et al.: PTfuzz: Guided Fuzzing With Processor Trace Feedback

XU ZHOU was born in Shanxi, China, in 1985.
He received the Ph.D. degree majoring in com-
puter science and parallel from the National
University of Defense Technology (NUDT),
Changsha, China, in 2013. He is currently an
Assistant Researcher with the College of Com-
puter, NUDT.

He has authored papers on PPoPP and several
top transactions on parallel. His research interests
are computer system and parallel.

YINGQI LUO was born in Hubei, China, in 1994.
He received the B.S. degree from the National
University of Defense Technology (NUDT),
Changsha, China, in 2016.

He is currently pursuing the master’s degree
with the School of Computer, NUDT. His research
interests include software analysis and reverse
engineering.

XUGANG WU was born in Guangdong, China,
in 1995. He received the B.S. degree from
the National University of Defense Technology
(NUDT), Changsha, China, in 2017.

He is currently pursuing the Ph.D. degree with
the School of Computer, NUDT. His research
interests include software analysis and fuzzing.

ERXUE MIN was born in Jiangsu, China,
in 1994. He received the B.S. degree from
the National University of Defense Technol-
ogy (NUDT), Changsha, China, in 2016.

He is currently pursuing the master’s degree
with the School of Computer, NUDT. His research
interests include machine learning, data mining,
optimization, and intrusion detection.

VOLUME 6, 2018 37313


	INTRODUCTION
	BACKGROUND
	BITMAP
	DEFINITION OF BITMAP
	WHAT DO VALUES IN BITMAP INDICATE?

	FEEDBACK IN GREYBOX FUZZING
	INTEL PROCESSOR TRACE
	SYMBOLIC EXECUTION AND FUZZING

	MODEL OVERVIEW
	IMPLEMENTATION
	EXPERIMENT
	SOURCE CODE AVAILABLE FUZZING
	BINARY-ONLY FUZZING
	EXPERIMENTS ON LAVA-M DATA SET

	DISCUSSION
	LIMITATIONS

	CONCLUSION
	REFERENCES
	Biographies
	GEN ZHANG
	XU ZHOU
	YINGQI LUO
	XUGANG WU
	ERXUE MIN


