; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -S | FileCheck %s ; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=IND ; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=UNROLL ; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=2 -S | FileCheck %s --check-prefix=UNROLL-NO-IC ; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=4 -enable-interleaved-mem-accesses -instcombine -S | FileCheck %s --check-prefix=INTERLEAVE target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128" ; Make sure that we can handle multiple integer induction variables. ; ; CHECK-LABEL: @multi_int_induction( ; CHECK: vector.body: ; CHECK-NEXT: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; CHECK-NEXT: %vec.ind = phi <2 x i32> [ <i32 190, i32 191>, %vector.ph ], [ %vec.ind.next, %vector.body ] ; CHECK: [[TMP3:%.*]] = add i64 %index, 0 ; CHECK-NEXT: [[TMP4:%.*]] = getelementptr inbounds i32, i32* %A, i64 [[TMP3]] ; CHECK-NEXT: [[TMP5:%.*]] = getelementptr inbounds i32, i32* [[TMP4]], i32 0 ; CHECK-NEXT: [[TMP6:%.*]] = bitcast i32* [[TMP5]] to <2 x i32>* ; CHECK-NEXT: store <2 x i32> %vec.ind, <2 x i32>* [[TMP6]], align 4 ; CHECK: %index.next = add i64 %index, 2 ; CHECK-NEXT: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2> ; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body define void @multi_int_induction(i32* %A, i32 %N) { for.body.lr.ph: br label %for.body for.body: %indvars.iv = phi i64 [ 0, %for.body.lr.ph ], [ %indvars.iv.next, %for.body ] %count.09 = phi i32 [ 190, %for.body.lr.ph ], [ %inc, %for.body ] %arrayidx2 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv store i32 %count.09, i32* %arrayidx2, align 4 %inc = add nsw i32 %count.09, 1 %indvars.iv.next = add i64 %indvars.iv, 1 %lftr.wideiv = trunc i64 %indvars.iv.next to i32 %exitcond = icmp ne i32 %lftr.wideiv, %N br i1 %exitcond, label %for.body, label %for.end for.end: ret void } ; Make sure we remove unneeded vectorization of induction variables. ; In order for instcombine to cleanup the vectorized induction variables that we ; create in the loop vectorizer we need to perform some form of redundancy ; elimination to get rid of multiple uses. ; IND-LABEL: scalar_use ; IND: br label %vector.body ; IND: vector.body: ; Vectorized induction variable. ; IND-NOT: insertelement <2 x i64> ; IND-NOT: shufflevector <2 x i64> ; IND: br {{.*}}, label %vector.body define void @scalar_use(float* %a, float %b, i64 %offset, i64 %offset2, i64 %n) { entry: br label %for.body for.body: %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %ind.sum = add i64 %iv, %offset %arr.idx = getelementptr inbounds float, float* %a, i64 %ind.sum %l1 = load float, float* %arr.idx, align 4 %ind.sum2 = add i64 %iv, %offset2 %arr.idx2 = getelementptr inbounds float, float* %a, i64 %ind.sum2 %l2 = load float, float* %arr.idx2, align 4 %m = fmul fast float %b, %l2 %ad = fadd fast float %l1, %m store float %ad, float* %arr.idx, align 4 %iv.next = add nuw nsw i64 %iv, 1 %exitcond = icmp eq i64 %iv.next, %n br i1 %exitcond, label %loopexit, label %for.body loopexit: ret void } ; Make sure we don't create a vector induction phi node that is unused. ; Scalarize the step vectors instead. ; ; for (int i = 0; i < n; ++i) ; sum += a[i]; ; ; CHECK-LABEL: @scalarize_induction_variable_01( ; CHECK: vector.body: ; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; CHECK: %[[i0:.+]] = add i64 %index, 0 ; CHECK: getelementptr inbounds i64, i64* %a, i64 %[[i0]] ; ; UNROLL-NO-IC-LABEL: @scalarize_induction_variable_01( ; UNROLL-NO-IC: vector.body: ; UNROLL-NO-IC: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; UNROLL-NO-IC: %[[i0:.+]] = add i64 %index, 0 ; UNROLL-NO-IC: %[[i2:.+]] = add i64 %index, 2 ; UNROLL-NO-IC: getelementptr inbounds i64, i64* %a, i64 %[[i0]] ; UNROLL-NO-IC: getelementptr inbounds i64, i64* %a, i64 %[[i2]] ; ; IND-LABEL: @scalarize_induction_variable_01( ; IND: vector.body: ; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; IND-NOT: add i64 {{.*}}, 2 ; IND: getelementptr inbounds i64, i64* %a, i64 %index ; ; UNROLL-LABEL: @scalarize_induction_variable_01( ; UNROLL: vector.body: ; UNROLL: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; UNROLL-NOT: add i64 {{.*}}, 4 ; UNROLL: %[[g1:.+]] = getelementptr inbounds i64, i64* %a, i64 %index ; UNROLL: getelementptr inbounds i64, i64* %[[g1]], i64 2 define i64 @scalarize_induction_variable_01(i64 *%a, i64 %n) { entry: br label %for.body for.body: %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ] %sum = phi i64 [ %2, %for.body ], [ 0, %entry ] %0 = getelementptr inbounds i64, i64* %a, i64 %i %1 = load i64, i64* %0, align 8 %2 = add i64 %1, %sum %i.next = add nuw nsw i64 %i, 1 %cond = icmp slt i64 %i.next, %n br i1 %cond, label %for.body, label %for.end for.end: %3 = phi i64 [ %2, %for.body ] ret i64 %3 } ; Make sure we scalarize the step vectors used for the pointer arithmetic. We ; can't easily simplify vectorized step vectors. ; ; float s = 0; ; for (int i ; 0; i < n; i += 8) ; s += (a[i] + b[i] + 1.0f); ; ; CHECK-LABEL: @scalarize_induction_variable_02( ; CHECK: vector.body: ; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; CHECK: %offset.idx = mul i64 %index, 8 ; CHECK: %[[i0:.+]] = add i64 %offset.idx, 0 ; CHECK: %[[i1:.+]] = add i64 %offset.idx, 8 ; CHECK: getelementptr inbounds float, float* %a, i64 %[[i0]] ; CHECK: getelementptr inbounds float, float* %a, i64 %[[i1]] ; CHECK: getelementptr inbounds float, float* %b, i64 %[[i0]] ; CHECK: getelementptr inbounds float, float* %b, i64 %[[i1]] ; ; UNROLL-NO-IC-LABEL: @scalarize_induction_variable_02( ; UNROLL-NO-IC: vector.body: ; UNROLL-NO-IC: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; UNROLL-NO-IC: %offset.idx = mul i64 %index, 8 ; UNROLL-NO-IC: %[[i0:.+]] = add i64 %offset.idx, 0 ; UNROLL-NO-IC: %[[i1:.+]] = add i64 %offset.idx, 8 ; UNROLL-NO-IC: %[[i2:.+]] = add i64 %offset.idx, 16 ; UNROLL-NO-IC: %[[i3:.+]] = add i64 %offset.idx, 24 ; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i0]] ; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i1]] ; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i2]] ; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i3]] ; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i0]] ; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i1]] ; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i2]] ; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i3]] ; ; IND-LABEL: @scalarize_induction_variable_02( ; IND: vector.body: ; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; IND: %[[i0:.+]] = shl i64 %index, 3 ; IND: %[[i1:.+]] = or i64 %[[i0]], 8 ; IND: getelementptr inbounds float, float* %a, i64 %[[i0]] ; IND: getelementptr inbounds float, float* %a, i64 %[[i1]] ; ; UNROLL-LABEL: @scalarize_induction_variable_02( ; UNROLL: vector.body: ; UNROLL: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; UNROLL: %[[i0:.+]] = shl i64 %index, 3 ; UNROLL: %[[i1:.+]] = or i64 %[[i0]], 8 ; UNROLL: %[[i2:.+]] = or i64 %[[i0]], 16 ; UNROLL: %[[i3:.+]] = or i64 %[[i0]], 24 ; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i0]] ; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i1]] ; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i2]] ; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i3]] define float @scalarize_induction_variable_02(float* %a, float* %b, i64 %n) { entry: br label %for.body for.body: %i = phi i64 [ 0, %entry ], [ %i.next, %for.body ] %s = phi float [ 0.0, %entry ], [ %6, %for.body ] %0 = getelementptr inbounds float, float* %a, i64 %i %1 = load float, float* %0, align 4 %2 = getelementptr inbounds float, float* %b, i64 %i %3 = load float, float* %2, align 4 %4 = fadd fast float %s, 1.0 %5 = fadd fast float %4, %1 %6 = fadd fast float %5, %3 %i.next = add nuw nsw i64 %i, 8 %cond = icmp slt i64 %i.next, %n br i1 %cond, label %for.body, label %for.end for.end: %s.lcssa = phi float [ %6, %for.body ] ret float %s.lcssa } ; Make sure we scalarize the step vectors used for the pointer arithmetic. We ; can't easily simplify vectorized step vectors. (Interleaved accesses.) ; ; for (int i = 0; i < n; ++i) ; a[i].f ^= y; ; ; INTERLEAVE-LABEL: @scalarize_induction_variable_03( ; INTERLEAVE: vector.body: ; INTERLEAVE: %[[i0:.+]] = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; INTERLEAVE: %[[i1:.+]] = or i64 %[[i0]], 1 ; INTERLEAVE: %[[i2:.+]] = or i64 %[[i0]], 2 ; INTERLEAVE: %[[i3:.+]] = or i64 %[[i0]], 3 ; INTERLEAVE: %[[i4:.+]] = or i64 %[[i0]], 4 ; INTERLEAVE: %[[i5:.+]] = or i64 %[[i0]], 5 ; INTERLEAVE: %[[i6:.+]] = or i64 %[[i0]], 6 ; INTERLEAVE: %[[i7:.+]] = or i64 %[[i0]], 7 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i0]], i32 1 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i1]], i32 1 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i2]], i32 1 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i3]], i32 1 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i4]], i32 1 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i5]], i32 1 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i6]], i32 1 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i7]], i32 1 %pair.i32 = type { i32, i32 } define void @scalarize_induction_variable_03(%pair.i32 *%p, i32 %y, i64 %n) { entry: br label %for.body for.body: %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ] %f = getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %i, i32 1 %0 = load i32, i32* %f, align 8 %1 = xor i32 %0, %y store i32 %1, i32* %f, align 8 %i.next = add nuw nsw i64 %i, 1 %cond = icmp slt i64 %i.next, %n br i1 %cond, label %for.body, label %for.end for.end: ret void } ; Make sure we scalarize the step vectors used for the pointer arithmetic. We ; can't easily simplify vectorized step vectors. (Interleaved accesses.) ; ; for (int i = 0; i < n; ++i) ; p[i].f = a[i * 4] ; ; INTERLEAVE-LABEL: @scalarize_induction_variable_04( ; INTERLEAVE: vector.body: ; INTERLEAVE: %[[i0:.+]] = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; INTERLEAVE: %[[i1:.+]] = or i64 %[[i0]], 1 ; INTERLEAVE: %[[i2:.+]] = or i64 %[[i0]], 2 ; INTERLEAVE: %[[i3:.+]] = or i64 %[[i0]], 3 ; INTERLEAVE: %[[i4:.+]] = or i64 %[[i0]], 4 ; INTERLEAVE: %[[i5:.+]] = or i64 %[[i0]], 5 ; INTERLEAVE: %[[i6:.+]] = or i64 %[[i0]], 6 ; INTERLEAVE: %[[i7:.+]] = or i64 %[[i0]], 7 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i0]], i32 1 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i1]], i32 1 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i2]], i32 1 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i3]], i32 1 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i4]], i32 1 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i5]], i32 1 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i6]], i32 1 ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i7]], i32 1 define void @scalarize_induction_variable_04(i32* %a, %pair.i32* %p, i32 %n) { entry: br label %for.body for.body: %i = phi i64 [ %i.next, %for.body ], [ 0, %entry] %0 = shl nsw i64 %i, 2 %1 = getelementptr inbounds i32, i32* %a, i64 %0 %2 = load i32, i32* %1, align 1 %3 = getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %i, i32 1 store i32 %2, i32* %3, align 1 %i.next = add nuw nsw i64 %i, 1 %4 = trunc i64 %i.next to i32 %cond = icmp eq i32 %4, %n br i1 %cond, label %for.end, label %for.body for.end: ret void } ; PR30542. Ensure we generate all the scalar steps for the induction variable. ; The scalar induction variable is used by a getelementptr instruction ; (uniform), and a udiv (non-uniform). ; ; int sum = 0; ; for (int i = 0; i < n; ++i) { ; int x = a[i]; ; if (c) ; x /= i; ; sum += x; ; } ; ; CHECK-LABEL: @scalarize_induction_variable_05( ; CHECK: vector.body: ; CHECK: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ] ; CHECK: %[[I0:.+]] = add i32 %index, 0 ; CHECK: getelementptr inbounds i32, i32* %a, i32 %[[I0]] ; CHECK: pred.udiv.if: ; CHECK: udiv i32 {{.*}}, %[[I0]] ; CHECK: pred.udiv.if{{[0-9]+}}: ; CHECK: %[[I1:.+]] = add i32 %index, 1 ; CHECK: udiv i32 {{.*}}, %[[I1]] ; ; UNROLL-NO_IC-LABEL: @scalarize_induction_variable_05( ; UNROLL-NO-IC: vector.body: ; UNROLL-NO-IC: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ] ; UNROLL-NO-IC: %[[I0:.+]] = add i32 %index, 0 ; UNROLL-NO-IC: %[[I2:.+]] = add i32 %index, 2 ; UNROLL-NO-IC: getelementptr inbounds i32, i32* %a, i32 %[[I0]] ; UNROLL-NO-IC: getelementptr inbounds i32, i32* %a, i32 %[[I2]] ; UNROLL-NO-IC: pred.udiv.if: ; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I0]] ; UNROLL-NO-IC: pred.udiv.if{{[0-9]+}}: ; UNROLL-NO-IC: %[[I1:.+]] = add i32 %index, 1 ; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I1]] ; UNROLL-NO-IC: pred.udiv.if{{[0-9]+}}: ; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I2]] ; UNROLL-NO-IC: pred.udiv.if{{[0-9]+}}: ; UNROLL-NO-IC: %[[I3:.+]] = add i32 %index, 3 ; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I3]] ; ; IND-LABEL: @scalarize_induction_variable_05( ; IND: vector.body: ; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ] ; IND: %[[E0:.+]] = sext i32 %index to i64 ; IND: getelementptr inbounds i32, i32* %a, i64 %[[E0]] ; IND: pred.udiv.if: ; IND: udiv i32 {{.*}}, %index ; IND: pred.udiv.if{{[0-9]+}}: ; IND: %[[I1:.+]] = or i32 %index, 1 ; IND: udiv i32 {{.*}}, %[[I1]] ; ; UNROLL-LABEL: @scalarize_induction_variable_05( ; UNROLL: vector.body: ; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ] ; UNROLL: %[[I2:.+]] = or i32 %index, 2 ; UNROLL: %[[E0:.+]] = sext i32 %index to i64 ; UNROLL: %[[G0:.+]] = getelementptr inbounds i32, i32* %a, i64 %[[E0]] ; UNROLL: getelementptr inbounds i32, i32* %[[G0]], i64 2 ; UNROLL: pred.udiv.if: ; UNROLL: udiv i32 {{.*}}, %index ; UNROLL: pred.udiv.if{{[0-9]+}}: ; UNROLL: %[[I1:.+]] = or i32 %index, 1 ; UNROLL: udiv i32 {{.*}}, %[[I1]] ; UNROLL: pred.udiv.if{{[0-9]+}}: ; UNROLL: udiv i32 {{.*}}, %[[I2]] ; UNROLL: pred.udiv.if{{[0-9]+}}: ; UNROLL: %[[I3:.+]] = or i32 %index, 3 ; UNROLL: udiv i32 {{.*}}, %[[I3]] define i32 @scalarize_induction_variable_05(i32* %a, i32 %x, i1 %c, i32 %n) { entry: br label %for.body for.body: %i = phi i32 [ 0, %entry ], [ %i.next, %if.end ] %sum = phi i32 [ 0, %entry ], [ %tmp4, %if.end ] %tmp0 = getelementptr inbounds i32, i32* %a, i32 %i %tmp1 = load i32, i32* %tmp0, align 4 br i1 %c, label %if.then, label %if.end if.then: %tmp2 = udiv i32 %tmp1, %i br label %if.end if.end: %tmp3 = phi i32 [ %tmp2, %if.then ], [ %tmp1, %for.body ] %tmp4 = add i32 %tmp3, %sum %i.next = add nuw nsw i32 %i, 1 %cond = icmp slt i32 %i.next, %n br i1 %cond, label %for.body, label %for.end for.end: %tmp5 = phi i32 [ %tmp4, %if.end ] ret i32 %tmp5 } ; Ensure we generate both a vector and a scalar induction variable. In this ; test, the induction variable is used by an instruction that will be ; vectorized (trunc) as well as an instruction that will remain in scalar form ; (gepelementptr). ; ; CHECK-LABEL: @iv_vector_and_scalar_users( ; CHECK: vector.body: ; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; CHECK: %vec.ind = phi <2 x i64> [ <i64 0, i64 1>, %vector.ph ], [ %vec.ind.next, %vector.body ] ; CHECK: %vec.ind1 = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next2, %vector.body ] ; CHECK: %[[i0:.+]] = add i64 %index, 0 ; CHECK: %[[i1:.+]] = add i64 %index, 1 ; CHECK: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i0]], i32 1 ; CHECK: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i1]], i32 1 ; CHECK: %index.next = add i64 %index, 2 ; CHECK: %vec.ind.next = add <2 x i64> %vec.ind, <i64 2, i64 2> ; CHECK: %vec.ind.next2 = add <2 x i32> %vec.ind1, <i32 2, i32 2> ; ; IND-LABEL: @iv_vector_and_scalar_users( ; IND: vector.body: ; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; IND: %vec.ind1 = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next2, %vector.body ] ; IND: %[[i1:.+]] = or i64 %index, 1 ; IND: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %index, i32 1 ; IND: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i1]], i32 1 ; IND: %index.next = add i64 %index, 2 ; IND: %vec.ind.next2 = add <2 x i32> %vec.ind1, <i32 2, i32 2> ; ; UNROLL-LABEL: @iv_vector_and_scalar_users( ; UNROLL: vector.body: ; UNROLL: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; UNROLL: %vec.ind2 = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next5, %vector.body ] ; UNROLL: %[[i1:.+]] = or i64 %index, 1 ; UNROLL: %[[i2:.+]] = or i64 %index, 2 ; UNROLL: %[[i3:.+]] = or i64 %index, 3 ; UNROLL: %step.add3 = add <2 x i32> %vec.ind2, <i32 2, i32 2> ; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %index, i32 1 ; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i1]], i32 1 ; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i2]], i32 1 ; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i3]], i32 1 ; UNROLL: %index.next = add i64 %index, 4 ; UNROLL: %vec.ind.next5 = add <2 x i32> %vec.ind2, <i32 4, i32 4> %pair.i16 = type { i16, i16 } define void @iv_vector_and_scalar_users(%pair.i16* %p, i32 %a, i32 %n) { entry: br label %for.body for.body: %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ] %0 = trunc i64 %i to i32 %1 = add i32 %a, %0 %2 = trunc i32 %1 to i16 %3 = getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %i, i32 1 store i16 %2, i16* %3, align 2 %i.next = add nuw nsw i64 %i, 1 %4 = trunc i64 %i.next to i32 %cond = icmp eq i32 %4, %n br i1 %cond, label %for.end, label %for.body for.end: ret void } ; Make sure that the loop exit count computation does not overflow for i8 and ; i16. The exit count of these loops is i8/i16 max + 1. If we don't cast the ; induction variable to a bigger type the exit count computation will overflow ; to 0. ; PR17532 ; CHECK-LABEL: i8_loop ; CHECK: icmp eq i32 {{.*}}, 256 define i32 @i8_loop() nounwind readnone ssp uwtable { br label %1 ; <label>:1 ; preds = %1, %0 %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] %b.0 = phi i8 [ 0, %0 ], [ %3, %1 ] %2 = and i32 %a.0, 4 %3 = add i8 %b.0, -1 %4 = icmp eq i8 %3, 0 br i1 %4, label %5, label %1 ; <label>:5 ; preds = %1 ret i32 %2 } ; CHECK-LABEL: i16_loop ; CHECK: icmp eq i32 {{.*}}, 65536 define i32 @i16_loop() nounwind readnone ssp uwtable { br label %1 ; <label>:1 ; preds = %1, %0 %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] %b.0 = phi i16 [ 0, %0 ], [ %3, %1 ] %2 = and i32 %a.0, 4 %3 = add i16 %b.0, -1 %4 = icmp eq i16 %3, 0 br i1 %4, label %5, label %1 ; <label>:5 ; preds = %1 ret i32 %2 } ; This loop has a backedge taken count of i32_max. We need to check for this ; condition and branch directly to the scalar loop. ; CHECK-LABEL: max_i32_backedgetaken ; CHECK: br i1 true, label %scalar.ph, label %vector.ph ; CHECK: middle.block: ; CHECK: %[[v9:.+]] = extractelement <2 x i32> %bin.rdx, i32 0 ; CHECK: scalar.ph: ; CHECK: %bc.resume.val = phi i32 [ 0, %middle.block ], [ 0, %[[v0:.+]] ] ; CHECK: %bc.merge.rdx = phi i32 [ 1, %[[v0:.+]] ], [ %[[v9]], %middle.block ] define i32 @max_i32_backedgetaken() nounwind readnone ssp uwtable { br label %1 ; <label>:1 ; preds = %1, %0 %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] %b.0 = phi i32 [ 0, %0 ], [ %3, %1 ] %2 = and i32 %a.0, 4 %3 = add i32 %b.0, -1 %4 = icmp eq i32 %3, 0 br i1 %4, label %5, label %1 ; <label>:5 ; preds = %1 ret i32 %2 } ; When generating the overflow check we must sure that the induction start value ; is defined before the branch to the scalar preheader. ; CHECK-LABEL: testoverflowcheck ; CHECK: entry ; CHECK: %[[LOAD:.*]] = load i8 ; CHECK: br ; CHECK: scalar.ph ; CHECK: phi i8 [ %{{.*}}, %middle.block ], [ %[[LOAD]], %entry ] @e = global i8 1, align 1 @d = common global i32 0, align 4 @c = common global i32 0, align 4 define i32 @testoverflowcheck() { entry: %.pr.i = load i8, i8* @e, align 1 %0 = load i32, i32* @d, align 4 %c.promoted.i = load i32, i32* @c, align 4 br label %cond.end.i cond.end.i: %inc4.i = phi i8 [ %.pr.i, %entry ], [ %inc.i, %cond.end.i ] %and3.i = phi i32 [ %c.promoted.i, %entry ], [ %and.i, %cond.end.i ] %and.i = and i32 %0, %and3.i %inc.i = add i8 %inc4.i, 1 %tobool.i = icmp eq i8 %inc.i, 0 br i1 %tobool.i, label %loopexit, label %cond.end.i loopexit: ret i32 %and.i } ; The SCEV expression of %sphi is (zext i8 {%t,+,1}<%loop> to i32) ; In order to recognize %sphi as an induction PHI and vectorize this loop, ; we need to convert the SCEV expression into an AddRecExpr. ; The expression gets converted to {zext i8 %t to i32,+,1}. ; CHECK-LABEL: wrappingindvars1 ; CHECK-LABEL: vector.scevcheck ; CHECK-LABEL: vector.ph ; CHECK: %[[START:.*]] = add <2 x i32> %{{.*}}, <i32 0, i32 1> ; CHECK-LABEL: vector.body ; CHECK: %[[PHI:.*]] = phi <2 x i32> [ %[[START]], %vector.ph ], [ %[[STEP:.*]], %vector.body ] ; CHECK: %[[STEP]] = add <2 x i32> %[[PHI]], <i32 2, i32 2> define void @wrappingindvars1(i8 %t, i32 %len, i32 *%A) { entry: %st = zext i8 %t to i16 %ext = zext i8 %t to i32 %ecmp = icmp ult i16 %st, 42 br i1 %ecmp, label %loop, label %exit loop: %idx = phi i8 [ %t, %entry ], [ %idx.inc, %loop ] %idx.b = phi i32 [ 0, %entry ], [ %idx.b.inc, %loop ] %sphi = phi i32 [ %ext, %entry ], [%idx.inc.ext, %loop] %ptr = getelementptr inbounds i32, i32* %A, i8 %idx store i32 %sphi, i32* %ptr %idx.inc = add i8 %idx, 1 %idx.inc.ext = zext i8 %idx.inc to i32 %idx.b.inc = add nuw nsw i32 %idx.b, 1 %c = icmp ult i32 %idx.b, %len br i1 %c, label %loop, label %exit exit: ret void } ; The SCEV expression of %sphi is (4 * (zext i8 {%t,+,1}<%loop> to i32)) ; In order to recognize %sphi as an induction PHI and vectorize this loop, ; we need to convert the SCEV expression into an AddRecExpr. ; The expression gets converted to ({4 * (zext %t to i32),+,4}). ; CHECK-LABEL: wrappingindvars2 ; CHECK-LABEL: vector.scevcheck ; CHECK-LABEL: vector.ph ; CHECK: %[[START:.*]] = add <2 x i32> %{{.*}}, <i32 0, i32 4> ; CHECK-LABEL: vector.body ; CHECK: %[[PHI:.*]] = phi <2 x i32> [ %[[START]], %vector.ph ], [ %[[STEP:.*]], %vector.body ] ; CHECK: %[[STEP]] = add <2 x i32> %[[PHI]], <i32 8, i32 8> define void @wrappingindvars2(i8 %t, i32 %len, i32 *%A) { entry: %st = zext i8 %t to i16 %ext = zext i8 %t to i32 %ext.mul = mul i32 %ext, 4 %ecmp = icmp ult i16 %st, 42 br i1 %ecmp, label %loop, label %exit loop: %idx = phi i8 [ %t, %entry ], [ %idx.inc, %loop ] %sphi = phi i32 [ %ext.mul, %entry ], [%mul, %loop] %idx.b = phi i32 [ 0, %entry ], [ %idx.b.inc, %loop ] %ptr = getelementptr inbounds i32, i32* %A, i8 %idx store i32 %sphi, i32* %ptr %idx.inc = add i8 %idx, 1 %idx.inc.ext = zext i8 %idx.inc to i32 %mul = mul i32 %idx.inc.ext, 4 %idx.b.inc = add nuw nsw i32 %idx.b, 1 %c = icmp ult i32 %idx.b, %len br i1 %c, label %loop, label %exit exit: ret void } ; Check that we generate vectorized IVs in the pre-header ; instead of widening the scalar IV inside the loop, when ; we know how to do that. ; IND-LABEL: veciv ; IND: vector.body: ; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; IND: %vec.ind = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next, %vector.body ] ; IND: %index.next = add i32 %index, 2 ; IND: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2> ; IND: %[[CMP:.*]] = icmp eq i32 %index.next ; IND: br i1 %[[CMP]] ; UNROLL-LABEL: veciv ; UNROLL: vector.body: ; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; UNROLL: %vec.ind = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next, %vector.body ] ; UNROLL: %step.add = add <2 x i32> %vec.ind, <i32 2, i32 2> ; UNROLL: %index.next = add i32 %index, 4 ; UNROLL: %vec.ind.next = add <2 x i32> %vec.ind, <i32 4, i32 4> ; UNROLL: %[[CMP:.*]] = icmp eq i32 %index.next ; UNROLL: br i1 %[[CMP]] define void @veciv(i32* nocapture %a, i32 %start, i32 %k) { for.body.preheader: br label %for.body for.body: %indvars.iv = phi i32 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ] %arrayidx = getelementptr inbounds i32, i32* %a, i32 %indvars.iv store i32 %indvars.iv, i32* %arrayidx, align 4 %indvars.iv.next = add nuw nsw i32 %indvars.iv, 1 %exitcond = icmp eq i32 %indvars.iv.next, %k br i1 %exitcond, label %exit, label %for.body exit: ret void } ; IND-LABEL: trunciv ; IND: vector.body: ; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; IND: %[[VECIND:.*]] = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %[[STEPADD:.*]], %vector.body ] ; IND: %index.next = add i64 %index, 2 ; IND: %[[STEPADD]] = add <2 x i32> %[[VECIND]], <i32 2, i32 2> ; IND: %[[CMP:.*]] = icmp eq i64 %index.next ; IND: br i1 %[[CMP]] define void @trunciv(i32* nocapture %a, i32 %start, i64 %k) { for.body.preheader: br label %for.body for.body: %indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ] %trunc.iv = trunc i64 %indvars.iv to i32 %arrayidx = getelementptr inbounds i32, i32* %a, i32 %trunc.iv store i32 %trunc.iv, i32* %arrayidx, align 4 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 %exitcond = icmp eq i64 %indvars.iv.next, %k br i1 %exitcond, label %exit, label %for.body exit: ret void } ; CHECK-LABEL: @nonprimary( ; CHECK: vector.ph: ; CHECK: %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0 ; CHECK: %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer ; CHECK: %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 1> ; CHECK: vector.body: ; CHECK: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; CHECK: %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %vec.ind.next, %vector.body ] ; CHECK: %offset.idx = add i32 %i, %index ; CHECK: %[[A1:.*]] = add i32 %offset.idx, 0 ; CHECK: %[[G1:.*]] = getelementptr inbounds i32, i32* %a, i32 %[[A1]] ; CHECK: %[[G3:.*]] = getelementptr inbounds i32, i32* %[[G1]], i32 0 ; CHECK: %[[B1:.*]] = bitcast i32* %[[G3]] to <2 x i32>* ; CHECK: store <2 x i32> %vec.ind, <2 x i32>* %[[B1]] ; CHECK: %index.next = add i32 %index, 2 ; CHECK: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2> ; CHECK: %[[CMP:.*]] = icmp eq i32 %index.next, %n.vec ; CHECK: br i1 %[[CMP]] ; ; IND-LABEL: @nonprimary( ; IND: vector.ph: ; IND: %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0 ; IND: %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer ; IND: %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 1> ; IND: vector.body: ; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; IND: %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %vec.ind.next, %vector.body ] ; IND: %[[A1:.*]] = add i32 %index, %i ; IND: %[[S1:.*]] = sext i32 %[[A1]] to i64 ; IND: %[[G1:.*]] = getelementptr inbounds i32, i32* %a, i64 %[[S1]] ; IND: %[[B1:.*]] = bitcast i32* %[[G1]] to <2 x i32>* ; IND: store <2 x i32> %vec.ind, <2 x i32>* %[[B1]] ; IND: %index.next = add i32 %index, 2 ; IND: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2> ; IND: %[[CMP:.*]] = icmp eq i32 %index.next, %n.vec ; IND: br i1 %[[CMP]] ; ; UNROLL-LABEL: @nonprimary( ; UNROLL: vector.ph: ; UNROLL: %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0 ; UNROLL: %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer ; UNROLL: %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 1> ; UNROLL: vector.body: ; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; UNROLL: %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %vec.ind.next, %vector.body ] ; UNROLL: %step.add = add <2 x i32> %vec.ind, <i32 2, i32 2> ; UNROLL: %[[A1:.*]] = add i32 %index, %i ; UNROLL: %[[S1:.*]] = sext i32 %[[A1]] to i64 ; UNROLL: %[[G1:.*]] = getelementptr inbounds i32, i32* %a, i64 %[[S1]] ; UNROLL: %[[B1:.*]] = bitcast i32* %[[G1]] to <2 x i32>* ; UNROLL: store <2 x i32> %vec.ind, <2 x i32>* %[[B1]] ; UNROLL: %[[G2:.*]] = getelementptr inbounds i32, i32* %[[G1]], i64 2 ; UNROLL: %[[B2:.*]] = bitcast i32* %[[G2]] to <2 x i32>* ; UNROLL: store <2 x i32> %step.add, <2 x i32>* %[[B2]] ; UNROLL: %index.next = add i32 %index, 4 ; UNROLL: %vec.ind.next = add <2 x i32> %vec.ind, <i32 4, i32 4> ; UNROLL: %[[CMP:.*]] = icmp eq i32 %index.next, %n.vec ; UNROLL: br i1 %[[CMP]] define void @nonprimary(i32* nocapture %a, i32 %start, i32 %i, i32 %k) { for.body.preheader: br label %for.body for.body: %indvars.iv = phi i32 [ %indvars.iv.next, %for.body ], [ %i, %for.body.preheader ] %arrayidx = getelementptr inbounds i32, i32* %a, i32 %indvars.iv store i32 %indvars.iv, i32* %arrayidx, align 4 %indvars.iv.next = add nuw nsw i32 %indvars.iv, 1 %exitcond = icmp eq i32 %indvars.iv.next, %k br i1 %exitcond, label %exit, label %for.body exit: ret void } ; CHECK-LABEL: @non_primary_iv_trunc( ; CHECK: vector.body: ; CHECK-NEXT: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; CHECK: [[VEC_IND:%.*]] = phi <2 x i32> [ <i32 0, i32 2>, %vector.ph ], [ [[VEC_IND_NEXT:%.*]], %vector.body ] ; CHECK: [[TMP3:%.*]] = add i64 %index, 0 ; CHECK-NEXT: [[TMP4:%.*]] = getelementptr inbounds i32, i32* %a, i64 [[TMP3]] ; CHECK-NEXT: [[TMP5:%.*]] = getelementptr inbounds i32, i32* [[TMP4]], i32 0 ; CHECK-NEXT: [[TMP6:%.*]] = bitcast i32* [[TMP5]] to <2 x i32>* ; CHECK-NEXT: store <2 x i32> [[VEC_IND]], <2 x i32>* [[TMP6]], align 4 ; CHECK-NEXT: %index.next = add i64 %index, 2 ; CHECK: [[VEC_IND_NEXT]] = add <2 x i32> [[VEC_IND]], <i32 4, i32 4> ; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body define void @non_primary_iv_trunc(i32* %a, i64 %n) { entry: br label %for.body for.body: %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ] %j = phi i64 [ %j.next, %for.body ], [ 0, %entry ] %tmp0 = getelementptr inbounds i32, i32* %a, i64 %i %tmp1 = trunc i64 %j to i32 store i32 %tmp1, i32* %tmp0, align 4 %i.next = add nuw nsw i64 %i, 1 %j.next = add nuw nsw i64 %j, 2 %cond = icmp slt i64 %i.next, %n br i1 %cond, label %for.body, label %for.end for.end: ret void } ; PR32419. Ensure we transform truncated non-primary induction variables. In ; the test case below we replace %tmp1 with a new induction variable. Because ; the truncated value is non-primary, we must compute an offset from the ; primary induction variable. ; ; CHECK-LABEL: @PR32419( ; CHECK: vector.body: ; CHECK-NEXT: [[INDEX:%.*]] = phi i32 [ 0, %vector.ph ], [ [[INDEX_NEXT:%.*]], %[[PRED_UREM_CONTINUE4:.*]] ] ; CHECK: [[OFFSET_IDX:%.*]] = add i32 -20, [[INDEX]] ; CHECK-NEXT: [[TMP1:%.*]] = trunc i32 [[OFFSET_IDX]] to i16 ; CHECK: [[TMP8:%.*]] = add i16 [[TMP1]], 0 ; CHECK-NEXT: [[TMP9:%.*]] = urem i16 %b, [[TMP8]] ; CHECK: [[TMP15:%.*]] = add i16 [[TMP1]], 1 ; CHECK-NEXT: [[TMP16:%.*]] = urem i16 %b, [[TMP15]] ; CHECK: [[PRED_UREM_CONTINUE4]]: ; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body ; define i32 @PR32419(i32 %a, i16 %b) { entry: br label %for.body for.body: %i = phi i32 [ -20, %entry ], [ %i.next, %for.inc ] %tmp0 = phi i32 [ %a, %entry ], [ %tmp6, %for.inc ] %tmp1 = trunc i32 %i to i16 %tmp2 = icmp eq i16 %tmp1, 0 br i1 %tmp2, label %for.inc, label %for.cond for.cond: %tmp3 = urem i16 %b, %tmp1 br label %for.inc for.inc: %tmp4 = phi i16 [ %tmp3, %for.cond ], [ 0, %for.body ] %tmp5 = sext i16 %tmp4 to i32 %tmp6 = or i32 %tmp0, %tmp5 %i.next = add nsw i32 %i, 1 %cond = icmp eq i32 %i.next, 0 br i1 %cond, label %for.end, label %for.body for.end: %tmp7 = phi i32 [ %tmp6, %for.inc ] ret i32 %tmp7 } ; Ensure that the shuffle vector for first order recurrence is inserted ; correctly after all the phis. These new phis correspond to new IVs ; that are generated by optimizing non-free truncs of IVs to IVs themselves define i64 @trunc_with_first_order_recurrence() { ; CHECK-LABEL: trunc_with_first_order_recurrence ; CHECK-LABEL: vector.body: ; CHECK-NEXT: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; CHECK-NEXT: %vec.phi = phi <2 x i64> ; CHECK-NEXT: %vec.ind = phi <2 x i64> [ <i64 1, i64 2>, %vector.ph ], [ %vec.ind.next, %vector.body ] ; CHECK-NEXT: %vec.ind2 = phi <2 x i32> [ <i32 1, i32 2>, %vector.ph ], [ %vec.ind.next3, %vector.body ] ; CHECK-NEXT: %vector.recur = phi <2 x i32> [ <i32 undef, i32 42>, %vector.ph ], [ %vec.ind5, %vector.body ] ; CHECK-NEXT: %vec.ind5 = phi <2 x i32> [ <i32 1, i32 2>, %vector.ph ], [ %vec.ind.next6, %vector.body ] ; CHECK-NEXT: %vec.ind7 = phi <2 x i32> [ <i32 1, i32 2>, %vector.ph ], [ %vec.ind.next8, %vector.body ] ; CHECK-NEXT: shufflevector <2 x i32> %vector.recur, <2 x i32> %vec.ind5, <2 x i32> <i32 1, i32 2> entry: br label %loop exit: ; preds = %loop %.lcssa = phi i64 [ %c23, %loop ] ret i64 %.lcssa loop: ; preds = %loop, %entry %c5 = phi i64 [ %c23, %loop ], [ 0, %entry ] %indvars.iv = phi i64 [ %indvars.iv.next, %loop ], [ 1, %entry ] %x = phi i32 [ %c24, %loop ], [ 1, %entry ] %y = phi i32 [ %c6, %loop ], [ 42, %entry ] %c6 = trunc i64 %indvars.iv to i32 %c8 = mul i32 %x, %c6 %c9 = add i32 %c8, 42 %c10 = add i32 %y, %c6 %c11 = add i32 %c10, %c9 %c12 = sext i32 %c11 to i64 %c13 = add i64 %c5, %c12 %indvars.iv.tr = trunc i64 %indvars.iv to i32 %c14 = shl i32 %indvars.iv.tr, 1 %c15 = add i32 %c9, %c14 %c16 = sext i32 %c15 to i64 %c23 = add i64 %c13, %c16 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 %c24 = add nuw nsw i32 %x, 1 %exitcond.i = icmp eq i64 %indvars.iv.next, 114 br i1 %exitcond.i, label %exit, label %loop }