//===- LoopsToGPU.cpp - Convert an affine loop nest to a GPU kernel -------===// // // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This implements a straightforward conversion of an loop nest into a GPU // kernel. The caller is expected to guarantee that the conversion is correct // or to further transform the kernel to ensure correctness. // //===----------------------------------------------------------------------===// #include "mlir/Conversion/LoopsToGPU/LoopsToGPU.h" #include "mlir/Conversion/AffineToStandard/AffineToStandard.h" #include "mlir/Dialect/AffineOps/AffineOps.h" #include "mlir/Dialect/GPU/GPUDialect.h" #include "mlir/Dialect/LoopOps/LoopOps.h" #include "mlir/Dialect/StandardOps/Ops.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/Builders.h" #include "mlir/Transforms/LoopUtils.h" #include "mlir/Transforms/RegionUtils.h" #include "llvm/ADT/Sequence.h" #include "llvm/Support/Debug.h" #define DEBUG_TYPE "loops-to-gpu" using namespace mlir; using namespace mlir::loop; using llvm::seq; // Extract an indexed value from KernelDim3. static Value getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos) { switch (pos) { case 0: return dim3.x; case 1: return dim3.y; case 2: return dim3.z; default: llvm_unreachable("dim3 position out of bounds"); } return nullptr; } // Get the lower bound-related operands of a loop operation. static Operation::operand_range getLowerBoundOperands(AffineForOp forOp) { return forOp.getLowerBoundOperands(); } static SmallVector<Value, 1> getLowerBoundOperands(ForOp forOp) { SmallVector<Value, 1> bounds(1, forOp.lowerBound()); return bounds; } // Get the upper bound-related operands of a loop operation. static Operation::operand_range getUpperBoundOperands(AffineForOp forOp) { return forOp.getUpperBoundOperands(); } static SmallVector<Value, 1> getUpperBoundOperands(ForOp forOp) { SmallVector<Value, 1> bounds(1, forOp.upperBound()); return bounds; } // Get a Value that corresponds to the loop step. If the step is an attribute, // materialize a corresponding constant using builder. static Value getOrCreateStep(AffineForOp forOp, OpBuilder &builder) { return builder.create<ConstantIndexOp>(forOp.getLoc(), forOp.getStep()); } static Value getOrCreateStep(ForOp forOp, OpBuilder &) { return forOp.step(); } // Get a Value for the loop lower bound. If the value requires computation, // materialize the instructions using builder. static Value getOrEmitLowerBound(AffineForOp forOp, OpBuilder &builder) { return lowerAffineLowerBound(forOp, builder); } static Value getOrEmitLowerBound(ForOp forOp, OpBuilder &) { return forOp.lowerBound(); } // Get a Value for the loop upper bound. If the value requires computation, // materialize the instructions using builder. static Value getOrEmitUpperBound(AffineForOp forOp, OpBuilder &builder) { return lowerAffineUpperBound(forOp, builder); } static Value getOrEmitUpperBound(ForOp forOp, OpBuilder &) { return forOp.upperBound(); } // Check the structure of the loop nest: // - there are enough loops to map to numDims; // - the loops are perfectly nested; // - the loop bounds can be computed above the outermost loop. // This roughly corresponds to the "matcher" part of the pattern-based // rewriting infrastructure. template <typename OpTy> static LogicalResult checkLoopNestMappableImpl(OpTy forOp, unsigned numDims) { Region &limit = forOp.region(); for (unsigned i = 0, e = numDims; i < e; ++i) { Operation *nested = &forOp.getBody()->front(); if (!areValuesDefinedAbove(getLowerBoundOperands(forOp), limit) || !areValuesDefinedAbove(getUpperBoundOperands(forOp), limit)) return forOp.emitError( "loops with bounds depending on other mapped loops " "are not supported"); // The innermost loop can have an arbitrary body, skip the perfect nesting // check for it. if (i == e - 1) break; auto begin = forOp.getBody()->begin(), end = forOp.getBody()->end(); if (forOp.getBody()->empty() || std::next(begin, 2) != end) return forOp.emitError("expected perfectly nested loops in the body"); if (!(forOp = dyn_cast<OpTy>(nested))) return nested->emitError("expected a nested loop"); } return success(); } template <typename OpTy> static LogicalResult checkLoopNestMappable(OpTy forOp, unsigned numBlockDims, unsigned numThreadDims) { if (numBlockDims < 1 || numThreadDims < 1) { LLVM_DEBUG(llvm::dbgs() << "nothing to map"); return success(); } OpBuilder builder(forOp.getOperation()); if (numBlockDims > 3) { return forOp.emitError("cannot map to more than 3 block dimensions"); } if (numThreadDims > 3) { return forOp.emitError("cannot map to more than 3 thread dimensions"); } return checkLoopNestMappableImpl(forOp, numBlockDims + numThreadDims); } template <typename OpTy> static LogicalResult checkLoopOpMappable(OpTy forOp, unsigned numBlockDims, unsigned numThreadDims) { if (numBlockDims < 1 || numThreadDims < 1) { LLVM_DEBUG(llvm::dbgs() << "nothing to map"); return success(); } if (numBlockDims > 3) { return forOp.emitError("cannot map to more than 3 block dimensions"); } if (numThreadDims > 3) { return forOp.emitError("cannot map to more than 3 thread dimensions"); } if (numBlockDims != numThreadDims) { // TODO(ravishankarm) : This can probably be relaxed by having a one-trip // loop for the missing dimension, but there is not reason to handle this // case for now. return forOp.emitError( "mismatch in block dimensions and thread dimensions"); } // Check that the forOp contains perfectly nested loops for numBlockDims if (failed(checkLoopNestMappableImpl(forOp, numBlockDims))) { return failure(); } // Get to the innermost loop. for (auto i : seq<unsigned>(0, numBlockDims - 1)) { forOp = cast<OpTy>(&forOp.getBody()->front()); (void)i; } // The forOp now points to the body of the innermost loop mapped to blocks. for (Operation &op : *forOp.getBody()) { // If the operation is a loop, check that it is mappable to workItems. if (auto innerLoop = dyn_cast<OpTy>(&op)) { if (failed(checkLoopNestMappableImpl(innerLoop, numThreadDims))) { return failure(); } continue; } // TODO(ravishankarm) : If it is not a loop op, it is assumed that the // statement is executed by all threads. It might be a collective operation, // or some non-side effect instruction. Have to decide on "allowable" // statements and check for those here. } return success(); } namespace { // Helper structure that holds common state of the loop to GPU kernel // conversion. struct LoopToGpuConverter { template <typename OpTy> Optional<OpTy> collectBounds(OpTy forOp, unsigned numLoops); template <typename OpTy> void createLaunch(OpTy rootForOp, OpTy innermostForOp, unsigned numBlockDims, unsigned numThreadDims); // Ranges of the loops mapped to blocks or threads. SmallVector<Value, 6> dims; // Lower bounds of the loops mapped to blocks or threads. SmallVector<Value, 6> lbs; // Induction variables of the loops mapped to blocks or threads. SmallVector<Value, 6> ivs; // Steps of the loops mapped to blocks or threads. SmallVector<Value, 6> steps; }; } // namespace // Return true if the value is obviously a constant "one". static bool isConstantOne(Value value) { if (auto def = dyn_cast_or_null<ConstantIndexOp>(value.getDefiningOp())) return def.getValue() == 1; return false; } // Collect ranges, bounds, steps and induction variables in preparation for // mapping a loop nest of depth "numLoops" rooted at "forOp" to a GPU kernel. // This may fail if the IR for computing loop bounds cannot be constructed, for // example if an affine loop uses semi-affine maps. Return the last loop to be // mapped on success, llvm::None on failure. template <typename OpTy> Optional<OpTy> LoopToGpuConverter::collectBounds(OpTy forOp, unsigned numLoops) { OpBuilder builder(forOp.getOperation()); dims.reserve(numLoops); lbs.reserve(numLoops); ivs.reserve(numLoops); steps.reserve(numLoops); OpTy currentLoop = forOp; for (unsigned i = 0; i < numLoops; ++i) { Value lowerBound = getOrEmitLowerBound(currentLoop, builder); Value upperBound = getOrEmitUpperBound(currentLoop, builder); if (!lowerBound || !upperBound) { return llvm::None; } Value range = builder.create<SubIOp>(currentLoop.getLoc(), upperBound, lowerBound); Value step = getOrCreateStep(currentLoop, builder); if (!isConstantOne(step)) range = builder.create<SignedDivIOp>(currentLoop.getLoc(), range, step); dims.push_back(range); lbs.push_back(lowerBound); ivs.push_back(currentLoop.getInductionVar()); steps.push_back(step); if (i != numLoops - 1) currentLoop = cast<OpTy>(¤tLoop.getBody()->front()); } return currentLoop; } /// Given `nDims` perfectly nested loops rooted as `rootForOp`, convert them o /// be partitioned across workgroups or workitems. The values for the /// workgroup/workitem id along each dimension is passed in with `ids`. The /// number of workgroups/workitems along each dimension are passed in with /// `nids`. The innermost loop is mapped to the x-dimension, followed by the /// next innermost loop to y-dimension, followed by z-dimension. template <typename OpTy> static OpTy createGPULaunchLoops(OpTy rootForOp, ArrayRef<Value> ids, ArrayRef<Value> nids) { auto nDims = ids.size(); assert(nDims == nids.size()); for (auto dim : llvm::seq<unsigned>(0, nDims)) { // TODO(ravishankarm): Don't always need to generate a loop here. If nids >= // number of iterations of the original loop, this becomes a if // condition. Though that does rely on how the workgroup/workitem sizes are // specified to begin with. mapLoopToProcessorIds(rootForOp, ids[dim], nids[dim]); if (dim != nDims - 1) { rootForOp = cast<OpTy>(rootForOp.getBody()->front()); } } return rootForOp; } /// Utility method to convert the gpu::KernelDim3 object for representing id of /// each workgroup/workitem and number of workgroup/workitems along a dimension /// of the launch into a container. static void packIdAndNumId(gpu::KernelDim3 kernelIds, gpu::KernelDim3 kernelNids, unsigned nDims, SmallVectorImpl<Value> &ids, SmallVectorImpl<Value> &nids) { assert(nDims <= 3 && "invalid number of launch dimensions"); SmallVector<Value, 3> allIds = {kernelIds.z, kernelIds.y, kernelIds.x}; SmallVector<Value, 3> allNids = {kernelNids.z, kernelNids.y, kernelNids.x}; ids.clear(); ids.append(std::next(allIds.begin(), allIds.size() - nDims), allIds.end()); nids.clear(); nids.append(std::next(allNids.begin(), allNids.size() - nDims), allNids.end()); } /// Generate the body of the launch operation. template <typename OpTy> static LogicalResult createLaunchBody(OpBuilder &builder, OpTy rootForOp, gpu::LaunchOp launchOp, unsigned numBlockDims, unsigned numThreadDims) { OpBuilder::InsertionGuard bodyInsertionGuard(builder); builder.setInsertionPointToEnd(&launchOp.body().front()); auto returnOp = builder.create<gpu::ReturnOp>(launchOp.getLoc()); rootForOp.getOperation()->moveBefore(returnOp); SmallVector<Value, 3> workgroupID, numWorkGroups; packIdAndNumId(launchOp.getBlockIds(), launchOp.getGridSize(), numBlockDims, workgroupID, numWorkGroups); // Partition the loop for mapping to workgroups. auto loopOp = createGPULaunchLoops(rootForOp, workgroupID, numWorkGroups); // Iterate over the body of the loopOp and get the loops to partition for // thread blocks. SmallVector<OpTy, 1> threadRootForOps; for (Operation &op : *loopOp.getBody()) { if (auto threadRootForOp = dyn_cast<OpTy>(&op)) { threadRootForOps.push_back(threadRootForOp); } } SmallVector<Value, 3> workItemID, workGroupSize; packIdAndNumId(launchOp.getThreadIds(), launchOp.getBlockSize(), numThreadDims, workItemID, workGroupSize); for (auto &loopOp : threadRootForOps) { builder.setInsertionPoint(loopOp); createGPULaunchLoops(loopOp, workItemID, workGroupSize); } return success(); } // Convert the computation rooted at the `rootForOp`, into a GPU kernel with the // given workgroup size and number of workgroups. template <typename OpTy> static LogicalResult createLaunchFromOp(OpTy rootForOp, ArrayRef<Value> numWorkGroups, ArrayRef<Value> workGroupSizes) { OpBuilder builder(rootForOp.getOperation()); if (numWorkGroups.size() > 3) { return rootForOp.emitError("invalid ") << numWorkGroups.size() << "-D workgroup specification"; } auto loc = rootForOp.getLoc(); Value one = builder.create<ConstantOp>( loc, builder.getIntegerAttr(builder.getIndexType(), 1)); SmallVector<Value, 3> numWorkGroups3D(3, one), workGroupSize3D(3, one); for (auto numWorkGroup : enumerate(numWorkGroups)) { numWorkGroups3D[numWorkGroup.index()] = numWorkGroup.value(); } for (auto workGroupSize : enumerate(workGroupSizes)) { workGroupSize3D[workGroupSize.index()] = workGroupSize.value(); } // Get the values used within the region of the rootForOp but defined above // it. llvm::SetVector<Value> valuesToForwardSet; getUsedValuesDefinedAbove(rootForOp.region(), rootForOp.region(), valuesToForwardSet); // Also add the values used for the lb, ub, and step of the rootForOp. valuesToForwardSet.insert(rootForOp.getOperands().begin(), rootForOp.getOperands().end()); auto valuesToForward = valuesToForwardSet.takeVector(); auto launchOp = builder.create<gpu::LaunchOp>( rootForOp.getLoc(), numWorkGroups3D[0], numWorkGroups3D[1], numWorkGroups3D[2], workGroupSize3D[0], workGroupSize3D[1], workGroupSize3D[2], valuesToForward); if (failed(createLaunchBody(builder, rootForOp, launchOp, numWorkGroups.size(), workGroupSizes.size()))) { return failure(); } // Replace values that are used within the region of the launchOp but are // defined outside. They all are replaced with kernel arguments. for (auto pair : llvm::zip_first(valuesToForward, launchOp.getKernelArguments())) { Value from = std::get<0>(pair); Value to = std::get<1>(pair); replaceAllUsesInRegionWith(from, to, launchOp.body()); } return success(); } // Replace the rooted at "rootForOp" with a GPU launch operation. This expects // "innermostForOp" to point to the last loop to be transformed to the kernel, // and to have (numBlockDims + numThreadDims) perfectly nested loops between // "rootForOp" and "innermostForOp". // TODO(ravishankarm) : This method can be modified to use the // createLaunchFromOp method, since that is a strict generalization of this // method. template <typename OpTy> void LoopToGpuConverter::createLaunch(OpTy rootForOp, OpTy innermostForOp, unsigned numBlockDims, unsigned numThreadDims) { OpBuilder builder(rootForOp.getOperation()); // Prepare the grid and block sizes for the launch operation. If there is // no loop mapped to a specific dimension, use constant "1" as its size. Value constOne = (numBlockDims < 3 || numThreadDims < 3) ? builder.create<ConstantIndexOp>(rootForOp.getLoc(), 1) : nullptr; Value gridSizeX = dims[0]; Value gridSizeY = numBlockDims > 1 ? dims[1] : constOne; Value gridSizeZ = numBlockDims > 2 ? dims[2] : constOne; Value blockSizeX = dims[numBlockDims]; Value blockSizeY = numThreadDims > 1 ? dims[numBlockDims + 1] : constOne; Value blockSizeZ = numThreadDims > 2 ? dims[numBlockDims + 2] : constOne; // Create a launch op and move the body region of the innermost loop to the // launch op. Pass the values defined outside the outermost loop and used // inside the innermost loop and loop lower bounds as kernel data arguments. // Still assuming perfect nesting so there are no values other than induction // variables that are defined in one loop and used in deeper loops. llvm::SetVector<Value> valuesToForwardSet; getUsedValuesDefinedAbove(innermostForOp.region(), rootForOp.region(), valuesToForwardSet); auto valuesToForward = valuesToForwardSet.takeVector(); auto originallyForwardedValues = valuesToForward.size(); valuesToForward.insert(valuesToForward.end(), lbs.begin(), lbs.end()); valuesToForward.insert(valuesToForward.end(), steps.begin(), steps.end()); auto launchOp = builder.create<gpu::LaunchOp>( rootForOp.getLoc(), gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ, valuesToForward); valuesToForward.resize(originallyForwardedValues); // Replace the loop terminator (loops contain only a single block) with the // gpu return and move the operations from the loop body block to the gpu // launch body block. Do not move the entire block because of the difference // in block arguments. Operation &terminator = innermostForOp.getBody()->back(); Location terminatorLoc = terminator.getLoc(); terminator.erase(); builder.setInsertionPointToEnd(innermostForOp.getBody()); builder.create<gpu::ReturnOp>(terminatorLoc); launchOp.body().front().getOperations().splice( launchOp.body().front().begin(), innermostForOp.getBody()->getOperations()); // Remap the loop iterators to use block/thread identifiers instead. Loops // may iterate from LB with step S whereas GPU thread/block ids always iterate // from 0 to N with step 1. Therefore, loop induction variables are replaced // with (gpu-thread/block-id * S) + LB. builder.setInsertionPointToStart(&launchOp.body().front()); auto lbArgumentIt = std::next(launchOp.getKernelArguments().begin(), originallyForwardedValues); auto stepArgumentIt = std::next(lbArgumentIt, lbs.size()); for (auto en : llvm::enumerate(ivs)) { Value id = en.index() < numBlockDims ? getDim3Value(launchOp.getBlockIds(), en.index()) : getDim3Value(launchOp.getThreadIds(), en.index() - numBlockDims); Value step = steps[en.index()]; if (!isConstantOne(step)) id = builder.create<MulIOp>(rootForOp.getLoc(), step, id); Value ivReplacement = builder.create<AddIOp>(rootForOp.getLoc(), *lbArgumentIt, id); en.value().replaceAllUsesWith(ivReplacement); replaceAllUsesInRegionWith(steps[en.index()], *stepArgumentIt, launchOp.body()); std::advance(lbArgumentIt, 1); std::advance(stepArgumentIt, 1); } // Remap the values defined outside the body to use kernel arguments instead. // The list of kernel arguments also contains the lower bounds for loops at // trailing positions, make sure we don't touch those. for (auto pair : llvm::zip_first(valuesToForward, launchOp.getKernelArguments())) { Value from = std::get<0>(pair); Value to = std::get<1>(pair); replaceAllUsesInRegionWith(from, to, launchOp.body()); } // We are done and can erase the original outermost loop. rootForOp.erase(); } // Generic loop to GPU kernel conversion function. template <typename OpTy> static LogicalResult convertLoopNestToGPULaunch(OpTy forOp, unsigned numBlockDims, unsigned numThreadDims) { if (failed(checkLoopNestMappable(forOp, numBlockDims, numThreadDims))) return failure(); LoopToGpuConverter converter; auto maybeInnerLoop = converter.collectBounds(forOp, numBlockDims + numThreadDims); if (!maybeInnerLoop) return failure(); converter.createLaunch(forOp, *maybeInnerLoop, numBlockDims, numThreadDims); return success(); } // Generic loop to GPU kernel conversion function when loop is imperfectly // nested. The workgroup size and num workgroups is provided as input template <typename OpTy> static LogicalResult convertLoopToGPULaunch(OpTy forOp, ArrayRef<Value> numWorkGroups, ArrayRef<Value> workGroupSize) { if (failed(checkLoopOpMappable(forOp, numWorkGroups.size(), workGroupSize.size()))) { return failure(); } return createLaunchFromOp(forOp, numWorkGroups, workGroupSize); } LogicalResult mlir::convertAffineLoopNestToGPULaunch(AffineForOp forOp, unsigned numBlockDims, unsigned numThreadDims) { return ::convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims); } LogicalResult mlir::convertLoopNestToGPULaunch(ForOp forOp, unsigned numBlockDims, unsigned numThreadDims) { return ::convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims); } LogicalResult mlir::convertLoopToGPULaunch(loop::ForOp forOp, ArrayRef<Value> numWorkGroups, ArrayRef<Value> workGroupSizes) { return ::convertLoopToGPULaunch(forOp, numWorkGroups, workGroupSizes); }