//===- Parser.cpp - MLIR Parser Implementation ----------------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the parser for the MLIR textual form.
//
//===----------------------------------------------------------------------===//

#include "mlir/Parser.h"
#include "Lexer.h"
#include "mlir/Analysis/Verifier.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Support/STLExtras.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/bit.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/SourceMgr.h"
#include <algorithm>
using namespace mlir;
using llvm::MemoryBuffer;
using llvm::SMLoc;
using llvm::SourceMgr;

namespace {
class Parser;

//===----------------------------------------------------------------------===//
// SymbolState
//===----------------------------------------------------------------------===//

/// This class contains record of any parsed top-level symbols.
struct SymbolState {
  // A map from attribute alias identifier to Attribute.
  llvm::StringMap<Attribute> attributeAliasDefinitions;

  // A map from type alias identifier to Type.
  llvm::StringMap<Type> typeAliasDefinitions;

  /// A set of locations into the main parser memory buffer for each of the
  /// active nested parsers. Given that some nested parsers, i.e. custom dialect
  /// parsers, operate on a temporary memory buffer, this provides an anchor
  /// point for emitting diagnostics.
  SmallVector<llvm::SMLoc, 1> nestedParserLocs;

  /// The top-level lexer that contains the original memory buffer provided by
  /// the user. This is used by nested parsers to get a properly encoded source
  /// location.
  Lexer *topLevelLexer = nullptr;
};

//===----------------------------------------------------------------------===//
// ParserState
//===----------------------------------------------------------------------===//

/// This class refers to all of the state maintained globally by the parser,
/// such as the current lexer position etc.
struct ParserState {
  ParserState(const llvm::SourceMgr &sourceMgr, MLIRContext *ctx,
              SymbolState &symbols)
      : context(ctx), lex(sourceMgr, ctx), curToken(lex.lexToken()),
        symbols(symbols), parserDepth(symbols.nestedParserLocs.size()) {
    // Set the top level lexer for the symbol state if one doesn't exist.
    if (!symbols.topLevelLexer)
      symbols.topLevelLexer = &lex;
  }
  ~ParserState() {
    // Reset the top level lexer if it refers the lexer in our state.
    if (symbols.topLevelLexer == &lex)
      symbols.topLevelLexer = nullptr;
  }
  ParserState(const ParserState &) = delete;
  void operator=(const ParserState &) = delete;

  /// The context we're parsing into.
  MLIRContext *const context;

  /// The lexer for the source file we're parsing.
  Lexer lex;

  /// This is the next token that hasn't been consumed yet.
  Token curToken;

  /// The current state for symbol parsing.
  SymbolState &symbols;

  /// The depth of this parser in the nested parsing stack.
  size_t parserDepth;
};

//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//

/// This class implement support for parsing global entities like types and
/// shared entities like SSA names.  It is intended to be subclassed by
/// specialized subparsers that include state, e.g. when a local symbol table.
class Parser {
public:
  Builder builder;

  Parser(ParserState &state) : builder(state.context), state(state) {}

  // Helper methods to get stuff from the parser-global state.
  ParserState &getState() const { return state; }
  MLIRContext *getContext() const { return state.context; }
  const llvm::SourceMgr &getSourceMgr() { return state.lex.getSourceMgr(); }

  /// Parse a comma-separated list of elements up until the specified end token.
  ParseResult
  parseCommaSeparatedListUntil(Token::Kind rightToken,
                               const std::function<ParseResult()> &parseElement,
                               bool allowEmptyList = true);

  /// Parse a comma separated list of elements that must have at least one entry
  /// in it.
  ParseResult
  parseCommaSeparatedList(const std::function<ParseResult()> &parseElement);

  ParseResult parsePrettyDialectSymbolName(StringRef &prettyName);

  // We have two forms of parsing methods - those that return a non-null
  // pointer on success, and those that return a ParseResult to indicate whether
  // they returned a failure.  The second class fills in by-reference arguments
  // as the results of their action.

  //===--------------------------------------------------------------------===//
  // Error Handling
  //===--------------------------------------------------------------------===//

  /// Emit an error and return failure.
  InFlightDiagnostic emitError(const Twine &message = {}) {
    return emitError(state.curToken.getLoc(), message);
  }
  InFlightDiagnostic emitError(SMLoc loc, const Twine &message = {});

  /// Encode the specified source location information into an attribute for
  /// attachment to the IR.
  Location getEncodedSourceLocation(llvm::SMLoc loc) {
    // If there are no active nested parsers, we can get the encoded source
    // location directly.
    if (state.parserDepth == 0)
      return state.lex.getEncodedSourceLocation(loc);
    // Otherwise, we need to re-encode it to point to the top level buffer.
    return state.symbols.topLevelLexer->getEncodedSourceLocation(
        remapLocationToTopLevelBuffer(loc));
  }

  /// Remaps the given SMLoc to the top level lexer of the parser. This is used
  /// to adjust locations of potentially nested parsers to ensure that they can
  /// be emitted properly as diagnostics.
  llvm::SMLoc remapLocationToTopLevelBuffer(llvm::SMLoc loc) {
    // If there are no active nested parsers, we can return location directly.
    SymbolState &symbols = state.symbols;
    if (state.parserDepth == 0)
      return loc;
    assert(symbols.topLevelLexer && "expected valid top-level lexer");

    // Otherwise, we need to remap the location to the main parser. This is
    // simply offseting the location onto the location of the last nested
    // parser.
    size_t offset = loc.getPointer() - state.lex.getBufferBegin();
    auto *rawLoc =
        symbols.nestedParserLocs[state.parserDepth - 1].getPointer() + offset;
    return llvm::SMLoc::getFromPointer(rawLoc);
  }

  //===--------------------------------------------------------------------===//
  // Token Parsing
  //===--------------------------------------------------------------------===//

  /// Return the current token the parser is inspecting.
  const Token &getToken() const { return state.curToken; }
  StringRef getTokenSpelling() const { return state.curToken.getSpelling(); }

  /// If the current token has the specified kind, consume it and return true.
  /// If not, return false.
  bool consumeIf(Token::Kind kind) {
    if (state.curToken.isNot(kind))
      return false;
    consumeToken(kind);
    return true;
  }

  /// Advance the current lexer onto the next token.
  void consumeToken() {
    assert(state.curToken.isNot(Token::eof, Token::error) &&
           "shouldn't advance past EOF or errors");
    state.curToken = state.lex.lexToken();
  }

  /// Advance the current lexer onto the next token, asserting what the expected
  /// current token is.  This is preferred to the above method because it leads
  /// to more self-documenting code with better checking.
  void consumeToken(Token::Kind kind) {
    assert(state.curToken.is(kind) && "consumed an unexpected token");
    consumeToken();
  }

  /// Consume the specified token if present and return success.  On failure,
  /// output a diagnostic and return failure.
  ParseResult parseToken(Token::Kind expectedToken, const Twine &message);

  //===--------------------------------------------------------------------===//
  // Type Parsing
  //===--------------------------------------------------------------------===//

  ParseResult parseFunctionResultTypes(SmallVectorImpl<Type> &elements);
  ParseResult parseTypeListNoParens(SmallVectorImpl<Type> &elements);
  ParseResult parseTypeListParens(SmallVectorImpl<Type> &elements);

  /// Parse an arbitrary type.
  Type parseType();

  /// Parse a complex type.
  Type parseComplexType();

  /// Parse an extended type.
  Type parseExtendedType();

  /// Parse a function type.
  Type parseFunctionType();

  /// Parse a memref type.
  Type parseMemRefType();

  /// Parse a non function type.
  Type parseNonFunctionType();

  /// Parse a tensor type.
  Type parseTensorType();

  /// Parse a tuple type.
  Type parseTupleType();

  /// Parse a vector type.
  VectorType parseVectorType();
  ParseResult parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions,
                                       bool allowDynamic = true);
  ParseResult parseXInDimensionList();

  /// Parse strided layout specification.
  ParseResult parseStridedLayout(int64_t &offset,
                                 SmallVectorImpl<int64_t> &strides);

  // Parse a brace-delimiter list of comma-separated integers with `?` as an
  // unknown marker.
  ParseResult parseStrideList(SmallVectorImpl<int64_t> &dimensions);

  //===--------------------------------------------------------------------===//
  // Attribute Parsing
  //===--------------------------------------------------------------------===//

  /// Parse an arbitrary attribute with an optional type.
  Attribute parseAttribute(Type type = {});

  /// Parse an attribute dictionary.
  ParseResult parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes);

  /// Parse an extended attribute.
  Attribute parseExtendedAttr(Type type);

  /// Parse a float attribute.
  Attribute parseFloatAttr(Type type, bool isNegative);

  /// Parse a decimal or a hexadecimal literal, which can be either an integer
  /// or a float attribute.
  Attribute parseDecOrHexAttr(Type type, bool isNegative);

  /// Parse an opaque elements attribute.
  Attribute parseOpaqueElementsAttr();

  /// Parse a dense elements attribute.
  Attribute parseDenseElementsAttr();
  ShapedType parseElementsLiteralType();

  /// Parse a sparse elements attribute.
  Attribute parseSparseElementsAttr();

  //===--------------------------------------------------------------------===//
  // Location Parsing
  //===--------------------------------------------------------------------===//

  /// Parse an inline location.
  ParseResult parseLocation(LocationAttr &loc);

  /// Parse a raw location instance.
  ParseResult parseLocationInstance(LocationAttr &loc);

  /// Parse a callsite location instance.
  ParseResult parseCallSiteLocation(LocationAttr &loc);

  /// Parse a fused location instance.
  ParseResult parseFusedLocation(LocationAttr &loc);

  /// Parse a name or FileLineCol location instance.
  ParseResult parseNameOrFileLineColLocation(LocationAttr &loc);

  /// Parse an optional trailing location.
  ///
  ///   trailing-location     ::= (`loc` `(` location `)`)?
  ///
  ParseResult parseOptionalTrailingLocation(Location &loc) {
    // If there is a 'loc' we parse a trailing location.
    if (!getToken().is(Token::kw_loc))
      return success();

    // Parse the location.
    LocationAttr directLoc;
    if (parseLocation(directLoc))
      return failure();
    loc = directLoc;
    return success();
  }

  //===--------------------------------------------------------------------===//
  // Affine Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a reference to either an affine map, or an integer set.
  ParseResult parseAffineMapOrIntegerSetReference(AffineMap &map,
                                                  IntegerSet &set);
  ParseResult parseAffineMapReference(AffineMap &map);
  ParseResult parseIntegerSetReference(IntegerSet &set);

  /// Parse an AffineMap where the dim and symbol identifiers are SSA ids.
  ParseResult
  parseAffineMapOfSSAIds(AffineMap &map,
                         function_ref<ParseResult(bool)> parseElement);

private:
  /// The Parser is subclassed and reinstantiated.  Do not add additional
  /// non-trivial state here, add it to the ParserState class.
  ParserState &state;
};
} // end anonymous namespace

//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//

/// Parse a comma separated list of elements that must have at least one entry
/// in it.
ParseResult Parser::parseCommaSeparatedList(
    const std::function<ParseResult()> &parseElement) {
  // Non-empty case starts with an element.
  if (parseElement())
    return failure();

  // Otherwise we have a list of comma separated elements.
  while (consumeIf(Token::comma)) {
    if (parseElement())
      return failure();
  }
  return success();
}

/// Parse a comma-separated list of elements, terminated with an arbitrary
/// token.  This allows empty lists if allowEmptyList is true.
///
///   abstract-list ::= rightToken                  // if allowEmptyList == true
///   abstract-list ::= element (',' element)* rightToken
///
ParseResult Parser::parseCommaSeparatedListUntil(
    Token::Kind rightToken, const std::function<ParseResult()> &parseElement,
    bool allowEmptyList) {
  // Handle the empty case.
  if (getToken().is(rightToken)) {
    if (!allowEmptyList)
      return emitError("expected list element");
    consumeToken(rightToken);
    return success();
  }

  if (parseCommaSeparatedList(parseElement) ||
      parseToken(rightToken, "expected ',' or '" +
                                 Token::getTokenSpelling(rightToken) + "'"))
    return failure();

  return success();
}

//===----------------------------------------------------------------------===//
// DialectAsmParser
//===----------------------------------------------------------------------===//

namespace {
/// This class provides the main implementation of the DialectAsmParser that
/// allows for dialects to parse attributes and types. This allows for dialect
/// hooking into the main MLIR parsing logic.
class CustomDialectAsmParser : public DialectAsmParser {
public:
  CustomDialectAsmParser(StringRef fullSpec, Parser &parser)
      : fullSpec(fullSpec), nameLoc(parser.getToken().getLoc()),
        parser(parser) {}
  ~CustomDialectAsmParser() override {}

  /// Emit a diagnostic at the specified location and return failure.
  InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override {
    return parser.emitError(loc, message);
  }

  /// Return a builder which provides useful access to MLIRContext, global
  /// objects like types and attributes.
  Builder &getBuilder() const override { return parser.builder; }

  /// Get the location of the next token and store it into the argument.  This
  /// always succeeds.
  llvm::SMLoc getCurrentLocation() override {
    return parser.getToken().getLoc();
  }

  /// Return the location of the original name token.
  llvm::SMLoc getNameLoc() const override { return nameLoc; }

  /// Re-encode the given source location as an MLIR location and return it.
  Location getEncodedSourceLoc(llvm::SMLoc loc) override {
    return parser.getEncodedSourceLocation(loc);
  }

  /// Returns the full specification of the symbol being parsed. This allows
  /// for using a separate parser if necessary.
  StringRef getFullSymbolSpec() const override { return fullSpec; }

  /// Parse a floating point value from the stream.
  ParseResult parseFloat(double &result) override {
    bool negative = parser.consumeIf(Token::minus);
    Token curTok = parser.getToken();

    // Check for a floating point value.
    if (curTok.is(Token::floatliteral)) {
      auto val = curTok.getFloatingPointValue();
      if (!val.hasValue())
        return emitError(curTok.getLoc(), "floating point value too large");
      parser.consumeToken(Token::floatliteral);
      result = negative ? -*val : *val;
      return success();
    }

    // TODO(riverriddle) support hex floating point values.
    return emitError(getCurrentLocation(), "expected floating point literal");
  }

  /// Parse an optional integer value from the stream.
  OptionalParseResult parseOptionalInteger(uint64_t &result) override {
    Token curToken = parser.getToken();
    if (curToken.isNot(Token::integer, Token::minus))
      return llvm::None;

    bool negative = parser.consumeIf(Token::minus);
    Token curTok = parser.getToken();
    if (parser.parseToken(Token::integer, "expected integer value"))
      return failure();

    auto val = curTok.getUInt64IntegerValue();
    if (!val)
      return emitError(curTok.getLoc(), "integer value too large");
    result = negative ? -*val : *val;
    return success();
  }

  //===--------------------------------------------------------------------===//
  // Token Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a `->` token.
  ParseResult parseArrow() override {
    return parser.parseToken(Token::arrow, "expected '->'");
  }

  /// Parses a `->` if present.
  ParseResult parseOptionalArrow() override {
    return success(parser.consumeIf(Token::arrow));
  }

  /// Parse a '{' token.
  ParseResult parseLBrace() override {
    return parser.parseToken(Token::l_brace, "expected '{'");
  }

  /// Parse a '{' token if present
  ParseResult parseOptionalLBrace() override {
    return success(parser.consumeIf(Token::l_brace));
  }

  /// Parse a `}` token.
  ParseResult parseRBrace() override {
    return parser.parseToken(Token::r_brace, "expected '}'");
  }

  /// Parse a `}` token if present
  ParseResult parseOptionalRBrace() override {
    return success(parser.consumeIf(Token::r_brace));
  }

  /// Parse a `:` token.
  ParseResult parseColon() override {
    return parser.parseToken(Token::colon, "expected ':'");
  }

  /// Parse a `:` token if present.
  ParseResult parseOptionalColon() override {
    return success(parser.consumeIf(Token::colon));
  }

  /// Parse a `,` token.
  ParseResult parseComma() override {
    return parser.parseToken(Token::comma, "expected ','");
  }

  /// Parse a `,` token if present.
  ParseResult parseOptionalComma() override {
    return success(parser.consumeIf(Token::comma));
  }

  /// Parses a `...` if present.
  ParseResult parseOptionalEllipsis() override {
    return success(parser.consumeIf(Token::ellipsis));
  }

  /// Parse a `=` token.
  ParseResult parseEqual() override {
    return parser.parseToken(Token::equal, "expected '='");
  }

  /// Parse a '<' token.
  ParseResult parseLess() override {
    return parser.parseToken(Token::less, "expected '<'");
  }

  /// Parse a `<` token if present.
  ParseResult parseOptionalLess() override {
    return success(parser.consumeIf(Token::less));
  }

  /// Parse a '>' token.
  ParseResult parseGreater() override {
    return parser.parseToken(Token::greater, "expected '>'");
  }

  /// Parse a `>` token if present.
  ParseResult parseOptionalGreater() override {
    return success(parser.consumeIf(Token::greater));
  }

  /// Parse a `(` token.
  ParseResult parseLParen() override {
    return parser.parseToken(Token::l_paren, "expected '('");
  }

  /// Parses a '(' if present.
  ParseResult parseOptionalLParen() override {
    return success(parser.consumeIf(Token::l_paren));
  }

  /// Parse a `)` token.
  ParseResult parseRParen() override {
    return parser.parseToken(Token::r_paren, "expected ')'");
  }

  /// Parses a ')' if present.
  ParseResult parseOptionalRParen() override {
    return success(parser.consumeIf(Token::r_paren));
  }

  /// Parse a `[` token.
  ParseResult parseLSquare() override {
    return parser.parseToken(Token::l_square, "expected '['");
  }

  /// Parses a '[' if present.
  ParseResult parseOptionalLSquare() override {
    return success(parser.consumeIf(Token::l_square));
  }

  /// Parse a `]` token.
  ParseResult parseRSquare() override {
    return parser.parseToken(Token::r_square, "expected ']'");
  }

  /// Parses a ']' if present.
  ParseResult parseOptionalRSquare() override {
    return success(parser.consumeIf(Token::r_square));
  }

  /// Parses a '?' if present.
  ParseResult parseOptionalQuestion() override {
    return success(parser.consumeIf(Token::question));
  }

  /// Parses a '*' if present.
  ParseResult parseOptionalStar() override {
    return success(parser.consumeIf(Token::star));
  }

  /// Returns if the current token corresponds to a keyword.
  bool isCurrentTokenAKeyword() const {
    return parser.getToken().is(Token::bare_identifier) ||
           parser.getToken().isKeyword();
  }

  /// Parse the given keyword if present.
  ParseResult parseOptionalKeyword(StringRef keyword) override {
    // Check that the current token has the same spelling.
    if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword)
      return failure();
    parser.consumeToken();
    return success();
  }

  /// Parse a keyword, if present, into 'keyword'.
  ParseResult parseOptionalKeyword(StringRef *keyword) override {
    // Check that the current token is a keyword.
    if (!isCurrentTokenAKeyword())
      return failure();

    *keyword = parser.getTokenSpelling();
    parser.consumeToken();
    return success();
  }

  //===--------------------------------------------------------------------===//
  // Attribute Parsing
  //===--------------------------------------------------------------------===//

  /// Parse an arbitrary attribute and return it in result.
  ParseResult parseAttribute(Attribute &result, Type type) override {
    result = parser.parseAttribute(type);
    return success(static_cast<bool>(result));
  }

  /// Parse an affine map instance into 'map'.
  ParseResult parseAffineMap(AffineMap &map) override {
    return parser.parseAffineMapReference(map);
  }

  /// Parse an integer set instance into 'set'.
  ParseResult printIntegerSet(IntegerSet &set) override {
    return parser.parseIntegerSetReference(set);
  }

  //===--------------------------------------------------------------------===//
  // Type Parsing
  //===--------------------------------------------------------------------===//

  ParseResult parseType(Type &result) override {
    result = parser.parseType();
    return success(static_cast<bool>(result));
  }

  ParseResult parseDimensionList(SmallVectorImpl<int64_t> &dimensions,
                                 bool allowDynamic) override {
    return parser.parseDimensionListRanked(dimensions, allowDynamic);
  }

private:
  /// The full symbol specification.
  StringRef fullSpec;

  /// The source location of the dialect symbol.
  SMLoc nameLoc;

  /// The main parser.
  Parser &parser;
};
} // namespace

/// Parse the body of a pretty dialect symbol, which starts and ends with <>'s,
/// and may be recursive.  Return with the 'prettyName' StringRef encompassing
/// the entire pretty name.
///
///   pretty-dialect-sym-body ::= '<' pretty-dialect-sym-contents+ '>'
///   pretty-dialect-sym-contents ::= pretty-dialect-sym-body
///                                  | '(' pretty-dialect-sym-contents+ ')'
///                                  | '[' pretty-dialect-sym-contents+ ']'
///                                  | '{' pretty-dialect-sym-contents+ '}'
///                                  | '[^[<({>\])}\0]+'
///
ParseResult Parser::parsePrettyDialectSymbolName(StringRef &prettyName) {
  // Pretty symbol names are a relatively unstructured format that contains a
  // series of properly nested punctuation, with anything else in the middle.
  // Scan ahead to find it and consume it if successful, otherwise emit an
  // error.
  auto *curPtr = getTokenSpelling().data();

  SmallVector<char, 8> nestedPunctuation;

  // Scan over the nested punctuation, bailing out on error and consuming until
  // we find the end.  We know that we're currently looking at the '<', so we
  // can go until we find the matching '>' character.
  assert(*curPtr == '<');
  do {
    char c = *curPtr++;
    switch (c) {
    case '\0':
      // This also handles the EOF case.
      return emitError("unexpected nul or EOF in pretty dialect name");
    case '<':
    case '[':
    case '(':
    case '{':
      nestedPunctuation.push_back(c);
      continue;

    case '-':
      // The sequence `->` is treated as special token.
      if (*curPtr == '>')
        ++curPtr;
      continue;

    case '>':
      if (nestedPunctuation.pop_back_val() != '<')
        return emitError("unbalanced '>' character in pretty dialect name");
      break;
    case ']':
      if (nestedPunctuation.pop_back_val() != '[')
        return emitError("unbalanced ']' character in pretty dialect name");
      break;
    case ')':
      if (nestedPunctuation.pop_back_val() != '(')
        return emitError("unbalanced ')' character in pretty dialect name");
      break;
    case '}':
      if (nestedPunctuation.pop_back_val() != '{')
        return emitError("unbalanced '}' character in pretty dialect name");
      break;

    default:
      continue;
    }
  } while (!nestedPunctuation.empty());

  // Ok, we succeeded, remember where we stopped, reset the lexer to know it is
  // consuming all this stuff, and return.
  state.lex.resetPointer(curPtr);

  unsigned length = curPtr - prettyName.begin();
  prettyName = StringRef(prettyName.begin(), length);
  consumeToken();
  return success();
}

/// Parse an extended dialect symbol.
template <typename Symbol, typename SymbolAliasMap, typename CreateFn>
static Symbol parseExtendedSymbol(Parser &p, Token::Kind identifierTok,
                                  SymbolAliasMap &aliases,
                                  CreateFn &&createSymbol) {
  // Parse the dialect namespace.
  StringRef identifier = p.getTokenSpelling().drop_front();
  auto loc = p.getToken().getLoc();
  p.consumeToken(identifierTok);

  // If there is no '<' token following this, and if the typename contains no
  // dot, then we are parsing a symbol alias.
  if (p.getToken().isNot(Token::less) && !identifier.contains('.')) {
    // Check for an alias for this type.
    auto aliasIt = aliases.find(identifier);
    if (aliasIt == aliases.end())
      return (p.emitError("undefined symbol alias id '" + identifier + "'"),
              nullptr);
    return aliasIt->second;
  }

  // Otherwise, we are parsing a dialect-specific symbol.  If the name contains
  // a dot, then this is the "pretty" form.  If not, it is the verbose form that
  // looks like <"...">.
  std::string symbolData;
  auto dialectName = identifier;

  // Handle the verbose form, where "identifier" is a simple dialect name.
  if (!identifier.contains('.')) {
    // Consume the '<'.
    if (p.parseToken(Token::less, "expected '<' in dialect type"))
      return nullptr;

    // Parse the symbol specific data.
    if (p.getToken().isNot(Token::string))
      return (p.emitError("expected string literal data in dialect symbol"),
              nullptr);
    symbolData = p.getToken().getStringValue();
    loc = llvm::SMLoc::getFromPointer(p.getToken().getLoc().getPointer() + 1);
    p.consumeToken(Token::string);

    // Consume the '>'.
    if (p.parseToken(Token::greater, "expected '>' in dialect symbol"))
      return nullptr;
  } else {
    // Ok, the dialect name is the part of the identifier before the dot, the
    // part after the dot is the dialect's symbol, or the start thereof.
    auto dotHalves = identifier.split('.');
    dialectName = dotHalves.first;
    auto prettyName = dotHalves.second;
    loc = llvm::SMLoc::getFromPointer(prettyName.data());

    // If the dialect's symbol is followed immediately by a <, then lex the body
    // of it into prettyName.
    if (p.getToken().is(Token::less) &&
        prettyName.bytes_end() == p.getTokenSpelling().bytes_begin()) {
      if (p.parsePrettyDialectSymbolName(prettyName))
        return nullptr;
    }

    symbolData = prettyName.str();
  }

  // Record the name location of the type remapped to the top level buffer.
  llvm::SMLoc locInTopLevelBuffer = p.remapLocationToTopLevelBuffer(loc);
  p.getState().symbols.nestedParserLocs.push_back(locInTopLevelBuffer);

  // Call into the provided symbol construction function.
  Symbol sym = createSymbol(dialectName, symbolData, loc);

  // Pop the last parser location.
  p.getState().symbols.nestedParserLocs.pop_back();
  return sym;
}

/// Parses a symbol, of type 'T', and returns it if parsing was successful. If
/// parsing failed, nullptr is returned. The number of bytes read from the input
/// string is returned in 'numRead'.
template <typename T, typename ParserFn>
static T parseSymbol(StringRef inputStr, MLIRContext *context,
                     SymbolState &symbolState, ParserFn &&parserFn,
                     size_t *numRead = nullptr) {
  SourceMgr sourceMgr;
  auto memBuffer = MemoryBuffer::getMemBuffer(
      inputStr, /*BufferName=*/"<mlir_parser_buffer>",
      /*RequiresNullTerminator=*/false);
  sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc());
  ParserState state(sourceMgr, context, symbolState);
  Parser parser(state);

  Token startTok = parser.getToken();
  T symbol = parserFn(parser);
  if (!symbol)
    return T();

  // If 'numRead' is valid, then provide the number of bytes that were read.
  Token endTok = parser.getToken();
  if (numRead) {
    *numRead = static_cast<size_t>(endTok.getLoc().getPointer() -
                                   startTok.getLoc().getPointer());

    // Otherwise, ensure that all of the tokens were parsed.
  } else if (startTok.getLoc() != endTok.getLoc() && endTok.isNot(Token::eof)) {
    parser.emitError(endTok.getLoc(), "encountered unexpected token");
    return T();
  }
  return symbol;
}

//===----------------------------------------------------------------------===//
// Error Handling
//===----------------------------------------------------------------------===//

InFlightDiagnostic Parser::emitError(SMLoc loc, const Twine &message) {
  auto diag = mlir::emitError(getEncodedSourceLocation(loc), message);

  // If we hit a parse error in response to a lexer error, then the lexer
  // already reported the error.
  if (getToken().is(Token::error))
    diag.abandon();
  return diag;
}

//===----------------------------------------------------------------------===//
// Token Parsing
//===----------------------------------------------------------------------===//

/// Consume the specified token if present and return success.  On failure,
/// output a diagnostic and return failure.
ParseResult Parser::parseToken(Token::Kind expectedToken,
                               const Twine &message) {
  if (consumeIf(expectedToken))
    return success();
  return emitError(message);
}

//===----------------------------------------------------------------------===//
// Type Parsing
//===----------------------------------------------------------------------===//

/// Parse an arbitrary type.
///
///   type ::= function-type
///          | non-function-type
///
Type Parser::parseType() {
  if (getToken().is(Token::l_paren))
    return parseFunctionType();
  return parseNonFunctionType();
}

/// Parse a function result type.
///
///   function-result-type ::= type-list-parens
///                          | non-function-type
///
ParseResult Parser::parseFunctionResultTypes(SmallVectorImpl<Type> &elements) {
  if (getToken().is(Token::l_paren))
    return parseTypeListParens(elements);

  Type t = parseNonFunctionType();
  if (!t)
    return failure();
  elements.push_back(t);
  return success();
}

/// Parse a list of types without an enclosing parenthesis.  The list must have
/// at least one member.
///
///   type-list-no-parens ::=  type (`,` type)*
///
ParseResult Parser::parseTypeListNoParens(SmallVectorImpl<Type> &elements) {
  auto parseElt = [&]() -> ParseResult {
    auto elt = parseType();
    elements.push_back(elt);
    return elt ? success() : failure();
  };

  return parseCommaSeparatedList(parseElt);
}

/// Parse a parenthesized list of types.
///
///   type-list-parens ::= `(` `)`
///                      | `(` type-list-no-parens `)`
///
ParseResult Parser::parseTypeListParens(SmallVectorImpl<Type> &elements) {
  if (parseToken(Token::l_paren, "expected '('"))
    return failure();

  // Handle empty lists.
  if (getToken().is(Token::r_paren))
    return consumeToken(), success();

  if (parseTypeListNoParens(elements) ||
      parseToken(Token::r_paren, "expected ')'"))
    return failure();
  return success();
}

/// Parse a complex type.
///
///   complex-type ::= `complex` `<` type `>`
///
Type Parser::parseComplexType() {
  consumeToken(Token::kw_complex);

  // Parse the '<'.
  if (parseToken(Token::less, "expected '<' in complex type"))
    return nullptr;

  auto typeLocation = getEncodedSourceLocation(getToken().getLoc());
  auto elementType = parseType();
  if (!elementType ||
      parseToken(Token::greater, "expected '>' in complex type"))
    return nullptr;

  return ComplexType::getChecked(elementType, typeLocation);
}

/// Parse an extended type.
///
///   extended-type ::= (dialect-type | type-alias)
///   dialect-type  ::= `!` dialect-namespace `<` `"` type-data `"` `>`
///   dialect-type  ::= `!` alias-name pretty-dialect-attribute-body?
///   type-alias    ::= `!` alias-name
///
Type Parser::parseExtendedType() {
  return parseExtendedSymbol<Type>(
      *this, Token::exclamation_identifier, state.symbols.typeAliasDefinitions,
      [&](StringRef dialectName, StringRef symbolData,
          llvm::SMLoc loc) -> Type {
        // If we found a registered dialect, then ask it to parse the type.
        if (auto *dialect = state.context->getRegisteredDialect(dialectName)) {
          return parseSymbol<Type>(
              symbolData, state.context, state.symbols, [&](Parser &parser) {
                CustomDialectAsmParser customParser(symbolData, parser);
                return dialect->parseType(customParser);
              });
        }

        // Otherwise, form a new opaque type.
        return OpaqueType::getChecked(
            Identifier::get(dialectName, state.context), symbolData,
            state.context, getEncodedSourceLocation(loc));
      });
}

/// Parse a function type.
///
///   function-type ::= type-list-parens `->` function-result-type
///
Type Parser::parseFunctionType() {
  assert(getToken().is(Token::l_paren));

  SmallVector<Type, 4> arguments, results;
  if (parseTypeListParens(arguments) ||
      parseToken(Token::arrow, "expected '->' in function type") ||
      parseFunctionResultTypes(results))
    return nullptr;

  return builder.getFunctionType(arguments, results);
}

/// Parse the offset and strides from a strided layout specification.
///
///   strided-layout ::= `offset:` dimension `,` `strides: ` stride-list
///
ParseResult Parser::parseStridedLayout(int64_t &offset,
                                       SmallVectorImpl<int64_t> &strides) {
  // Parse offset.
  consumeToken(Token::kw_offset);
  if (!consumeIf(Token::colon))
    return emitError("expected colon after `offset` keyword");
  auto maybeOffset = getToken().getUnsignedIntegerValue();
  bool question = getToken().is(Token::question);
  if (!maybeOffset && !question)
    return emitError("invalid offset");
  offset = maybeOffset ? static_cast<int64_t>(maybeOffset.getValue())
                       : MemRefType::getDynamicStrideOrOffset();
  consumeToken();

  if (!consumeIf(Token::comma))
    return emitError("expected comma after offset value");

  // Parse stride list.
  if (!consumeIf(Token::kw_strides))
    return emitError("expected `strides` keyword after offset specification");
  if (!consumeIf(Token::colon))
    return emitError("expected colon after `strides` keyword");
  if (failed(parseStrideList(strides)))
    return emitError("invalid braces-enclosed stride list");
  if (llvm::any_of(strides, [](int64_t st) { return st == 0; }))
    return emitError("invalid memref stride");

  return success();
}

/// Parse a memref type.
///
///   memref-type ::= ranked-memref-type | unranked-memref-type
///
///   ranked-memref-type ::= `memref` `<` dimension-list-ranked type
///                          (`,` semi-affine-map-composition)? (`,`
///                          memory-space)? `>`
///
///   unranked-memref-type ::= `memref` `<*x` type (`,` memory-space)? `>`
///
///   semi-affine-map-composition ::= (semi-affine-map `,` )* semi-affine-map
///   memory-space ::= integer-literal /* | TODO: address-space-id */
///
Type Parser::parseMemRefType() {
  consumeToken(Token::kw_memref);

  if (parseToken(Token::less, "expected '<' in memref type"))
    return nullptr;

  bool isUnranked;
  SmallVector<int64_t, 4> dimensions;

  if (consumeIf(Token::star)) {
    // This is an unranked memref type.
    isUnranked = true;
    if (parseXInDimensionList())
      return nullptr;

  } else {
    isUnranked = false;
    if (parseDimensionListRanked(dimensions))
      return nullptr;
  }

  // Parse the element type.
  auto typeLoc = getToken().getLoc();
  auto elementType = parseType();
  if (!elementType)
    return nullptr;

  // Parse semi-affine-map-composition.
  SmallVector<AffineMap, 2> affineMapComposition;
  unsigned memorySpace = 0;
  bool parsedMemorySpace = false;

  auto parseElt = [&]() -> ParseResult {
    if (getToken().is(Token::integer)) {
      // Parse memory space.
      if (parsedMemorySpace)
        return emitError("multiple memory spaces specified in memref type");
      auto v = getToken().getUnsignedIntegerValue();
      if (!v.hasValue())
        return emitError("invalid memory space in memref type");
      memorySpace = v.getValue();
      consumeToken(Token::integer);
      parsedMemorySpace = true;
    } else {
      if (isUnranked)
        return emitError("cannot have affine map for unranked memref type");
      if (parsedMemorySpace)
        return emitError("expected memory space to be last in memref type");
      if (getToken().is(Token::kw_offset)) {
        int64_t offset;
        SmallVector<int64_t, 4> strides;
        if (failed(parseStridedLayout(offset, strides)))
          return failure();
        // Construct strided affine map.
        auto map = makeStridedLinearLayoutMap(strides, offset,
                                              elementType.getContext());
        affineMapComposition.push_back(map);
      } else {
        // Parse affine map.
        auto affineMap = parseAttribute();
        if (!affineMap)
          return failure();
        // Verify that the parsed attribute is an affine map.
        if (auto affineMapAttr = affineMap.dyn_cast<AffineMapAttr>())
          affineMapComposition.push_back(affineMapAttr.getValue());
        else
          return emitError("expected affine map in memref type");
      }
    }
    return success();
  };

  // Parse a list of mappings and address space if present.
  if (consumeIf(Token::comma)) {
    // Parse comma separated list of affine maps, followed by memory space.
    if (parseCommaSeparatedListUntil(Token::greater, parseElt,
                                     /*allowEmptyList=*/false)) {
      return nullptr;
    }
  } else {
    if (parseToken(Token::greater, "expected ',' or '>' in memref type"))
      return nullptr;
  }

  if (isUnranked)
    return UnrankedMemRefType::getChecked(elementType, memorySpace,
                                          getEncodedSourceLocation(typeLoc));

  return MemRefType::getChecked(dimensions, elementType, affineMapComposition,
                                memorySpace, getEncodedSourceLocation(typeLoc));
}

/// Parse any type except the function type.
///
///   non-function-type ::= integer-type
///                       | index-type
///                       | float-type
///                       | extended-type
///                       | vector-type
///                       | tensor-type
///                       | memref-type
///                       | complex-type
///                       | tuple-type
///                       | none-type
///
///   index-type ::= `index`
///   float-type ::= `f16` | `bf16` | `f32` | `f64`
///   none-type ::= `none`
///
Type Parser::parseNonFunctionType() {
  switch (getToken().getKind()) {
  default:
    return (emitError("expected non-function type"), nullptr);
  case Token::kw_memref:
    return parseMemRefType();
  case Token::kw_tensor:
    return parseTensorType();
  case Token::kw_complex:
    return parseComplexType();
  case Token::kw_tuple:
    return parseTupleType();
  case Token::kw_vector:
    return parseVectorType();
  // integer-type
  case Token::inttype: {
    auto width = getToken().getIntTypeBitwidth();
    if (!width.hasValue())
      return (emitError("invalid integer width"), nullptr);
    auto loc = getEncodedSourceLocation(getToken().getLoc());
    consumeToken(Token::inttype);
    return IntegerType::getChecked(width.getValue(), builder.getContext(), loc);
  }

  // float-type
  case Token::kw_bf16:
    consumeToken(Token::kw_bf16);
    return builder.getBF16Type();
  case Token::kw_f16:
    consumeToken(Token::kw_f16);
    return builder.getF16Type();
  case Token::kw_f32:
    consumeToken(Token::kw_f32);
    return builder.getF32Type();
  case Token::kw_f64:
    consumeToken(Token::kw_f64);
    return builder.getF64Type();

  // index-type
  case Token::kw_index:
    consumeToken(Token::kw_index);
    return builder.getIndexType();

  // none-type
  case Token::kw_none:
    consumeToken(Token::kw_none);
    return builder.getNoneType();

  // extended type
  case Token::exclamation_identifier:
    return parseExtendedType();
  }
}

/// Parse a tensor type.
///
///   tensor-type ::= `tensor` `<` dimension-list type `>`
///   dimension-list ::= dimension-list-ranked | `*x`
///
Type Parser::parseTensorType() {
  consumeToken(Token::kw_tensor);

  if (parseToken(Token::less, "expected '<' in tensor type"))
    return nullptr;

  bool isUnranked;
  SmallVector<int64_t, 4> dimensions;

  if (consumeIf(Token::star)) {
    // This is an unranked tensor type.
    isUnranked = true;

    if (parseXInDimensionList())
      return nullptr;

  } else {
    isUnranked = false;
    if (parseDimensionListRanked(dimensions))
      return nullptr;
  }

  // Parse the element type.
  auto typeLocation = getEncodedSourceLocation(getToken().getLoc());
  auto elementType = parseType();
  if (!elementType || parseToken(Token::greater, "expected '>' in tensor type"))
    return nullptr;

  if (isUnranked)
    return UnrankedTensorType::getChecked(elementType, typeLocation);
  return RankedTensorType::getChecked(dimensions, elementType, typeLocation);
}

/// Parse a tuple type.
///
///   tuple-type ::= `tuple` `<` (type (`,` type)*)? `>`
///
Type Parser::parseTupleType() {
  consumeToken(Token::kw_tuple);

  // Parse the '<'.
  if (parseToken(Token::less, "expected '<' in tuple type"))
    return nullptr;

  // Check for an empty tuple by directly parsing '>'.
  if (consumeIf(Token::greater))
    return TupleType::get(getContext());

  // Parse the element types and the '>'.
  SmallVector<Type, 4> types;
  if (parseTypeListNoParens(types) ||
      parseToken(Token::greater, "expected '>' in tuple type"))
    return nullptr;

  return TupleType::get(types, getContext());
}

/// Parse a vector type.
///
///   vector-type ::= `vector` `<` non-empty-static-dimension-list type `>`
///   non-empty-static-dimension-list ::= decimal-literal `x`
///                                       static-dimension-list
///   static-dimension-list ::= (decimal-literal `x`)*
///
VectorType Parser::parseVectorType() {
  consumeToken(Token::kw_vector);

  if (parseToken(Token::less, "expected '<' in vector type"))
    return nullptr;

  SmallVector<int64_t, 4> dimensions;
  if (parseDimensionListRanked(dimensions, /*allowDynamic=*/false))
    return nullptr;
  if (dimensions.empty())
    return (emitError("expected dimension size in vector type"), nullptr);

  // Parse the element type.
  auto typeLoc = getToken().getLoc();
  auto elementType = parseType();
  if (!elementType || parseToken(Token::greater, "expected '>' in vector type"))
    return nullptr;

  return VectorType::getChecked(dimensions, elementType,
                                getEncodedSourceLocation(typeLoc));
}

/// Parse a dimension list of a tensor or memref type.  This populates the
/// dimension list, using -1 for the `?` dimensions if `allowDynamic` is set and
/// errors out on `?` otherwise.
///
///   dimension-list-ranked ::= (dimension `x`)*
///   dimension ::= `?` | decimal-literal
///
/// When `allowDynamic` is not set, this is used to parse:
///
///   static-dimension-list ::= (decimal-literal `x`)*
ParseResult
Parser::parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions,
                                 bool allowDynamic) {
  while (getToken().isAny(Token::integer, Token::question)) {
    if (consumeIf(Token::question)) {
      if (!allowDynamic)
        return emitError("expected static shape");
      dimensions.push_back(-1);
    } else {
      // Hexadecimal integer literals (starting with `0x`) are not allowed in
      // aggregate type declarations.  Therefore, `0xf32` should be processed as
      // a sequence of separate elements `0`, `x`, `f32`.
      if (getTokenSpelling().size() > 1 && getTokenSpelling()[1] == 'x') {
        // We can get here only if the token is an integer literal.  Hexadecimal
        // integer literals can only start with `0x` (`1x` wouldn't lex as a
        // literal, just `1` would, at which point we don't get into this
        // branch).
        assert(getTokenSpelling()[0] == '0' && "invalid integer literal");
        dimensions.push_back(0);
        state.lex.resetPointer(getTokenSpelling().data() + 1);
        consumeToken();
      } else {
        // Make sure this integer value is in bound and valid.
        auto dimension = getToken().getUnsignedIntegerValue();
        if (!dimension.hasValue())
          return emitError("invalid dimension");
        dimensions.push_back((int64_t)dimension.getValue());
        consumeToken(Token::integer);
      }
    }

    // Make sure we have an 'x' or something like 'xbf32'.
    if (parseXInDimensionList())
      return failure();
  }

  return success();
}

/// Parse an 'x' token in a dimension list, handling the case where the x is
/// juxtaposed with an element type, as in "xf32", leaving the "f32" as the next
/// token.
ParseResult Parser::parseXInDimensionList() {
  if (getToken().isNot(Token::bare_identifier) || getTokenSpelling()[0] != 'x')
    return emitError("expected 'x' in dimension list");

  // If we had a prefix of 'x', lex the next token immediately after the 'x'.
  if (getTokenSpelling().size() != 1)
    state.lex.resetPointer(getTokenSpelling().data() + 1);

  // Consume the 'x'.
  consumeToken(Token::bare_identifier);

  return success();
}

// Parse a comma-separated list of dimensions, possibly empty:
//   stride-list ::= `[` (dimension (`,` dimension)*)? `]`
ParseResult Parser::parseStrideList(SmallVectorImpl<int64_t> &dimensions) {
  if (!consumeIf(Token::l_square))
    return failure();
  // Empty list early exit.
  if (consumeIf(Token::r_square))
    return success();
  while (true) {
    if (consumeIf(Token::question)) {
      dimensions.push_back(MemRefType::getDynamicStrideOrOffset());
    } else {
      // This must be an integer value.
      int64_t val;
      if (getToken().getSpelling().getAsInteger(10, val))
        return emitError("invalid integer value: ") << getToken().getSpelling();
      // Make sure it is not the one value for `?`.
      if (ShapedType::isDynamic(val))
        return emitError("invalid integer value: ")
               << getToken().getSpelling()
               << ", use `?` to specify a dynamic dimension";
      dimensions.push_back(val);
      consumeToken(Token::integer);
    }
    if (!consumeIf(Token::comma))
      break;
  }
  if (!consumeIf(Token::r_square))
    return failure();
  return success();
}

//===----------------------------------------------------------------------===//
// Attribute parsing.
//===----------------------------------------------------------------------===//

/// Return the symbol reference referred to by the given token, that is known to
/// be an @-identifier.
static std::string extractSymbolReference(Token tok) {
  assert(tok.is(Token::at_identifier) && "expected valid @-identifier");
  StringRef nameStr = tok.getSpelling().drop_front();

  // Check to see if the reference is a string literal, or a bare identifier.
  if (nameStr.front() == '"')
    return tok.getStringValue();
  return nameStr;
}

/// Parse an arbitrary attribute.
///
///  attribute-value ::= `unit`
///                    | bool-literal
///                    | integer-literal (`:` (index-type | integer-type))?
///                    | float-literal (`:` float-type)?
///                    | string-literal (`:` type)?
///                    | type
///                    | `[` (attribute-value (`,` attribute-value)*)? `]`
///                    | `{` (attribute-entry (`,` attribute-entry)*)? `}`
///                    | symbol-ref-id (`::` symbol-ref-id)*
///                    | `dense` `<` attribute-value `>` `:`
///                      (tensor-type | vector-type)
///                    | `sparse` `<` attribute-value `,` attribute-value `>`
///                      `:` (tensor-type | vector-type)
///                    | `opaque` `<` dialect-namespace  `,` hex-string-literal
///                      `>` `:` (tensor-type | vector-type)
///                    | extended-attribute
///
Attribute Parser::parseAttribute(Type type) {
  switch (getToken().getKind()) {
  // Parse an AffineMap or IntegerSet attribute.
  case Token::kw_affine_map: {
    consumeToken(Token::kw_affine_map);

    AffineMap map;
    if (parseToken(Token::less, "expected '<' in affine map") ||
        parseAffineMapReference(map) ||
        parseToken(Token::greater, "expected '>' in affine map"))
      return Attribute();
    return AffineMapAttr::get(map);
  }
  case Token::kw_affine_set: {
    consumeToken(Token::kw_affine_set);

    IntegerSet set;
    if (parseToken(Token::less, "expected '<' in integer set") ||
        parseIntegerSetReference(set) ||
        parseToken(Token::greater, "expected '>' in integer set"))
      return Attribute();
    return IntegerSetAttr::get(set);
  }

  // Parse an array attribute.
  case Token::l_square: {
    consumeToken(Token::l_square);

    SmallVector<Attribute, 4> elements;
    auto parseElt = [&]() -> ParseResult {
      elements.push_back(parseAttribute());
      return elements.back() ? success() : failure();
    };

    if (parseCommaSeparatedListUntil(Token::r_square, parseElt))
      return nullptr;
    return builder.getArrayAttr(elements);
  }

  // Parse a boolean attribute.
  case Token::kw_false:
    consumeToken(Token::kw_false);
    return builder.getBoolAttr(false);
  case Token::kw_true:
    consumeToken(Token::kw_true);
    return builder.getBoolAttr(true);

  // Parse a dense elements attribute.
  case Token::kw_dense:
    return parseDenseElementsAttr();

  // Parse a dictionary attribute.
  case Token::l_brace: {
    SmallVector<NamedAttribute, 4> elements;
    if (parseAttributeDict(elements))
      return nullptr;
    return builder.getDictionaryAttr(elements);
  }

  // Parse an extended attribute, i.e. alias or dialect attribute.
  case Token::hash_identifier:
    return parseExtendedAttr(type);

  // Parse floating point and integer attributes.
  case Token::floatliteral:
    return parseFloatAttr(type, /*isNegative=*/false);
  case Token::integer:
    return parseDecOrHexAttr(type, /*isNegative=*/false);
  case Token::minus: {
    consumeToken(Token::minus);
    if (getToken().is(Token::integer))
      return parseDecOrHexAttr(type, /*isNegative=*/true);
    if (getToken().is(Token::floatliteral))
      return parseFloatAttr(type, /*isNegative=*/true);

    return (emitError("expected constant integer or floating point value"),
            nullptr);
  }

  // Parse a location attribute.
  case Token::kw_loc: {
    LocationAttr attr;
    return failed(parseLocation(attr)) ? Attribute() : attr;
  }

  // Parse an opaque elements attribute.
  case Token::kw_opaque:
    return parseOpaqueElementsAttr();

  // Parse a sparse elements attribute.
  case Token::kw_sparse:
    return parseSparseElementsAttr();

  // Parse a string attribute.
  case Token::string: {
    auto val = getToken().getStringValue();
    consumeToken(Token::string);
    // Parse the optional trailing colon type if one wasn't explicitly provided.
    if (!type && consumeIf(Token::colon) && !(type = parseType()))
      return Attribute();

    return type ? StringAttr::get(val, type)
                : StringAttr::get(val, getContext());
  }

  // Parse a symbol reference attribute.
  case Token::at_identifier: {
    std::string nameStr = extractSymbolReference(getToken());
    consumeToken(Token::at_identifier);

    // Parse any nested references.
    std::vector<FlatSymbolRefAttr> nestedRefs;
    while (getToken().is(Token::colon)) {
      // Check for the '::' prefix.
      const char *curPointer = getToken().getLoc().getPointer();
      consumeToken(Token::colon);
      if (!consumeIf(Token::colon)) {
        state.lex.resetPointer(curPointer);
        consumeToken();
        break;
      }
      // Parse the reference itself.
      auto curLoc = getToken().getLoc();
      if (getToken().isNot(Token::at_identifier)) {
        emitError(curLoc, "expected nested symbol reference identifier");
        return Attribute();
      }

      std::string nameStr = extractSymbolReference(getToken());
      consumeToken(Token::at_identifier);
      nestedRefs.push_back(SymbolRefAttr::get(nameStr, getContext()));
    }

    return builder.getSymbolRefAttr(nameStr, nestedRefs);
  }

  // Parse a 'unit' attribute.
  case Token::kw_unit:
    consumeToken(Token::kw_unit);
    return builder.getUnitAttr();

  default:
    // Parse a type attribute.
    if (Type type = parseType())
      return TypeAttr::get(type);
    return nullptr;
  }
}

/// Attribute dictionary.
///
///   attribute-dict ::= `{` `}`
///                    | `{` attribute-entry (`,` attribute-entry)* `}`
///   attribute-entry ::= bare-id `=` attribute-value
///
ParseResult
Parser::parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes) {
  if (parseToken(Token::l_brace, "expected '{' in attribute dictionary"))
    return failure();

  auto parseElt = [&]() -> ParseResult {
    // We allow keywords as attribute names.
    if (getToken().isNot(Token::bare_identifier, Token::inttype) &&
        !getToken().isKeyword())
      return emitError("expected attribute name");
    Identifier nameId = builder.getIdentifier(getTokenSpelling());
    consumeToken();

    // Try to parse the '=' for the attribute value.
    if (!consumeIf(Token::equal)) {
      // If there is no '=', we treat this as a unit attribute.
      attributes.push_back({nameId, builder.getUnitAttr()});
      return success();
    }

    auto attr = parseAttribute();
    if (!attr)
      return failure();

    attributes.push_back({nameId, attr});
    return success();
  };

  if (parseCommaSeparatedListUntil(Token::r_brace, parseElt))
    return failure();

  return success();
}

/// Parse an extended attribute.
///
///   extended-attribute ::= (dialect-attribute | attribute-alias)
///   dialect-attribute  ::= `#` dialect-namespace `<` `"` attr-data `"` `>`
///   dialect-attribute  ::= `#` alias-name pretty-dialect-sym-body?
///   attribute-alias    ::= `#` alias-name
///
Attribute Parser::parseExtendedAttr(Type type) {
  Attribute attr = parseExtendedSymbol<Attribute>(
      *this, Token::hash_identifier, state.symbols.attributeAliasDefinitions,
      [&](StringRef dialectName, StringRef symbolData,
          llvm::SMLoc loc) -> Attribute {
        // Parse an optional trailing colon type.
        Type attrType = type;
        if (consumeIf(Token::colon) && !(attrType = parseType()))
          return Attribute();

        // If we found a registered dialect, then ask it to parse the attribute.
        if (auto *dialect = state.context->getRegisteredDialect(dialectName)) {
          return parseSymbol<Attribute>(
              symbolData, state.context, state.symbols, [&](Parser &parser) {
                CustomDialectAsmParser customParser(symbolData, parser);
                return dialect->parseAttribute(customParser, attrType);
              });
        }

        // Otherwise, form a new opaque attribute.
        return OpaqueAttr::getChecked(
            Identifier::get(dialectName, state.context), symbolData,
            attrType ? attrType : NoneType::get(state.context),
            getEncodedSourceLocation(loc));
      });

  // Ensure that the attribute has the same type as requested.
  if (attr && type && attr.getType() != type) {
    emitError("attribute type different than expected: expected ")
        << type << ", but got " << attr.getType();
    return nullptr;
  }
  return attr;
}

/// Parse a float attribute.
Attribute Parser::parseFloatAttr(Type type, bool isNegative) {
  auto val = getToken().getFloatingPointValue();
  if (!val.hasValue())
    return (emitError("floating point value too large for attribute"), nullptr);
  consumeToken(Token::floatliteral);
  if (!type) {
    // Default to F64 when no type is specified.
    if (!consumeIf(Token::colon))
      type = builder.getF64Type();
    else if (!(type = parseType()))
      return nullptr;
  }
  if (!type.isa<FloatType>())
    return (emitError("floating point value not valid for specified type"),
            nullptr);
  return FloatAttr::get(type, isNegative ? -val.getValue() : val.getValue());
}

/// Construct a float attribute bitwise equivalent to the integer literal.
static FloatAttr buildHexadecimalFloatLiteral(Parser *p, FloatType type,
                                              uint64_t value) {
  // FIXME: bfloat is currently stored as a double internally because it doesn't
  // have valid APFloat semantics.
  if (type.isF64() || type.isBF16()) {
    APFloat apFloat(type.getFloatSemantics(), APInt(/*numBits=*/64, value));
    return p->builder.getFloatAttr(type, apFloat);
  }

  APInt apInt(type.getWidth(), value);
  if (apInt != value) {
    p->emitError("hexadecimal float constant out of range for type");
    return nullptr;
  }
  APFloat apFloat(type.getFloatSemantics(), apInt);
  return p->builder.getFloatAttr(type, apFloat);
}

/// Parse a decimal or a hexadecimal literal, which can be either an integer
/// or a float attribute.
Attribute Parser::parseDecOrHexAttr(Type type, bool isNegative) {
  auto val = getToken().getUInt64IntegerValue();
  if (!val.hasValue())
    return (emitError("integer constant out of range for attribute"), nullptr);

  // Remember if the literal is hexadecimal.
  StringRef spelling = getToken().getSpelling();
  auto loc = state.curToken.getLoc();
  bool isHex = spelling.size() > 1 && spelling[1] == 'x';

  consumeToken(Token::integer);
  if (!type) {
    // Default to i64 if not type is specified.
    if (!consumeIf(Token::colon))
      type = builder.getIntegerType(64);
    else if (!(type = parseType()))
      return nullptr;
  }

  if (auto floatType = type.dyn_cast<FloatType>()) {
    if (isNegative)
      return emitError(
                 loc,
                 "hexadecimal float literal should not have a leading minus"),
             nullptr;
    if (!isHex) {
      emitError(loc, "unexpected decimal integer literal for a float attribute")
              .attachNote()
          << "add a trailing dot to make the literal a float";
      return nullptr;
    }

    // Construct a float attribute bitwise equivalent to the integer literal.
    return buildHexadecimalFloatLiteral(this, floatType, *val);
  }

  if (!type.isIntOrIndex())
    return emitError(loc, "integer literal not valid for specified type"),
           nullptr;

  // Parse the integer literal.
  int width = type.isIndex() ? 64 : type.getIntOrFloatBitWidth();
  APInt apInt(width, *val, isNegative);
  if (apInt != *val)
    return emitError(loc, "integer constant out of range for attribute"),
           nullptr;

  // Otherwise construct an integer attribute.
  if (isNegative ? (int64_t)-val.getValue() >= 0 : (int64_t)val.getValue() < 0)
    return emitError(loc, "integer constant out of range for attribute"),
           nullptr;

  return builder.getIntegerAttr(type, isNegative ? -apInt : apInt);
}

/// Parse an opaque elements attribute.
Attribute Parser::parseOpaqueElementsAttr() {
  consumeToken(Token::kw_opaque);
  if (parseToken(Token::less, "expected '<' after 'opaque'"))
    return nullptr;

  if (getToken().isNot(Token::string))
    return (emitError("expected dialect namespace"), nullptr);

  auto name = getToken().getStringValue();
  auto *dialect = builder.getContext()->getRegisteredDialect(name);
  // TODO(shpeisman): Allow for having an unknown dialect on an opaque
  // attribute. Otherwise, it can't be roundtripped without having the dialect
  // registered.
  if (!dialect)
    return (emitError("no registered dialect with namespace '" + name + "'"),
            nullptr);

  consumeToken(Token::string);
  if (parseToken(Token::comma, "expected ','"))
    return nullptr;

  if (getToken().getKind() != Token::string)
    return (emitError("opaque string should start with '0x'"), nullptr);

  auto val = getToken().getStringValue();
  if (val.size() < 2 || val[0] != '0' || val[1] != 'x')
    return (emitError("opaque string should start with '0x'"), nullptr);

  val = val.substr(2);
  if (!llvm::all_of(val, llvm::isHexDigit))
    return (emitError("opaque string only contains hex digits"), nullptr);

  consumeToken(Token::string);
  if (parseToken(Token::greater, "expected '>'") ||
      parseToken(Token::colon, "expected ':'"))
    return nullptr;

  auto type = parseElementsLiteralType();
  if (!type)
    return nullptr;

  return OpaqueElementsAttr::get(dialect, type, llvm::fromHex(val));
}

namespace {
class TensorLiteralParser {
public:
  TensorLiteralParser(Parser &p) : p(p) {}

  ParseResult parse() {
    if (p.getToken().is(Token::l_square))
      return parseList(shape);
    return parseElement();
  }

  /// Build a dense attribute instance with the parsed elements and the given
  /// shaped type.
  DenseElementsAttr getAttr(llvm::SMLoc loc, ShapedType type);

  ArrayRef<int64_t> getShape() const { return shape; }

private:
  enum class ElementKind { Boolean, Integer, Float };

  /// Return a string to represent the given element kind.
  const char *getElementKindStr(ElementKind kind) {
    switch (kind) {
    case ElementKind::Boolean:
      return "'boolean'";
    case ElementKind::Integer:
      return "'integer'";
    case ElementKind::Float:
      return "'float'";
    }
    llvm_unreachable("unknown element kind");
  }

  /// Build a Dense Integer attribute for the given type.
  DenseElementsAttr getIntAttr(llvm::SMLoc loc, ShapedType type,
                               IntegerType eltTy);

  /// Build a Dense Float attribute for the given type.
  DenseElementsAttr getFloatAttr(llvm::SMLoc loc, ShapedType type,
                                 FloatType eltTy);

  /// Parse a single element, returning failure if it isn't a valid element
  /// literal. For example:
  /// parseElement(1) -> Success, 1
  /// parseElement([1]) -> Failure
  ParseResult parseElement();

  /// Parse a list of either lists or elements, returning the dimensions of the
  /// parsed sub-tensors in dims. For example:
  ///   parseList([1, 2, 3]) -> Success, [3]
  ///   parseList([[1, 2], [3, 4]]) -> Success, [2, 2]
  ///   parseList([[1, 2], 3]) -> Failure
  ///   parseList([[1, [2, 3]], [4, [5]]]) -> Failure
  ParseResult parseList(SmallVectorImpl<int64_t> &dims);

  Parser &p;

  /// The shape inferred from the parsed elements.
  SmallVector<int64_t, 4> shape;

  /// Storage used when parsing elements, this is a pair of <is_negated, token>.
  std::vector<std::pair<bool, Token>> storage;

  /// A flag that indicates the type of elements that have been parsed.
  Optional<ElementKind> knownEltKind;
};
} // namespace

/// Build a dense attribute instance with the parsed elements and the given
/// shaped type.
DenseElementsAttr TensorLiteralParser::getAttr(llvm::SMLoc loc,
                                               ShapedType type) {
  // Check that the parsed storage size has the same number of elements to the
  // type, or is a known splat.
  if (!shape.empty() && getShape() != type.getShape()) {
    p.emitError(loc) << "inferred shape of elements literal ([" << getShape()
                     << "]) does not match type ([" << type.getShape() << "])";
    return nullptr;
  }

  // If the type is an integer, build a set of APInt values from the storage
  // with the correct bitwidth.
  if (auto intTy = type.getElementType().dyn_cast<IntegerType>())
    return getIntAttr(loc, type, intTy);

  // Otherwise, this must be a floating point type.
  auto floatTy = type.getElementType().dyn_cast<FloatType>();
  if (!floatTy) {
    p.emitError(loc) << "expected floating-point or integer element type, got "
                     << type.getElementType();
    return nullptr;
  }
  return getFloatAttr(loc, type, floatTy);
}

/// Build a Dense Integer attribute for the given type.
DenseElementsAttr TensorLiteralParser::getIntAttr(llvm::SMLoc loc,
                                                  ShapedType type,
                                                  IntegerType eltTy) {
  std::vector<APInt> intElements;
  intElements.reserve(storage.size());
  for (const auto &signAndToken : storage) {
    bool isNegative = signAndToken.first;
    const Token &token = signAndToken.second;

    // Check to see if floating point values were parsed.
    if (token.is(Token::floatliteral)) {
      p.emitError() << "expected integer elements, but parsed floating-point";
      return nullptr;
    }

    assert(token.isAny(Token::integer, Token::kw_true, Token::kw_false) &&
           "unexpected token type");
    if (token.isAny(Token::kw_true, Token::kw_false)) {
      if (!eltTy.isInteger(1))
        p.emitError() << "expected i1 type for 'true' or 'false' values";
      APInt apInt(eltTy.getWidth(), token.is(Token::kw_true),
                  /*isSigned=*/false);
      intElements.push_back(apInt);
      continue;
    }

    // Create APInt values for each element with the correct bitwidth.
    auto val = token.getUInt64IntegerValue();
    if (!val.hasValue() || (isNegative ? (int64_t)-val.getValue() >= 0
                                       : (int64_t)val.getValue() < 0)) {
      p.emitError(token.getLoc(),
                  "integer constant out of range for attribute");
      return nullptr;
    }
    APInt apInt(eltTy.getWidth(), val.getValue(), isNegative);
    if (apInt != val.getValue())
      return (p.emitError("integer constant out of range for type"), nullptr);
    intElements.push_back(isNegative ? -apInt : apInt);
  }

  return DenseElementsAttr::get(type, intElements);
}

/// Build a Dense Float attribute for the given type.
DenseElementsAttr TensorLiteralParser::getFloatAttr(llvm::SMLoc loc,
                                                    ShapedType type,
                                                    FloatType eltTy) {
  std::vector<Attribute> floatValues;
  floatValues.reserve(storage.size());
  for (const auto &signAndToken : storage) {
    bool isNegative = signAndToken.first;
    const Token &token = signAndToken.second;

    // Handle hexadecimal float literals.
    if (token.is(Token::integer) && token.getSpelling().startswith("0x")) {
      if (isNegative) {
        p.emitError(token.getLoc())
            << "hexadecimal float literal should not have a leading minus";
        return nullptr;
      }
      auto val = token.getUInt64IntegerValue();
      if (!val.hasValue()) {
        p.emitError("hexadecimal float constant out of range for attribute");
        return nullptr;
      }
      FloatAttr attr = buildHexadecimalFloatLiteral(&p, eltTy, *val);
      if (!attr)
        return nullptr;
      floatValues.push_back(attr);
      continue;
    }

    // Check to see if any decimal integers or booleans were parsed.
    if (!token.is(Token::floatliteral)) {
      p.emitError() << "expected floating-point elements, but parsed integer";
      return nullptr;
    }

    // Build the float values from tokens.
    auto val = token.getFloatingPointValue();
    if (!val.hasValue()) {
      p.emitError("floating point value too large for attribute");
      return nullptr;
    }
    floatValues.push_back(FloatAttr::get(eltTy, isNegative ? -*val : *val));
  }

  return DenseElementsAttr::get(type, floatValues);
}

ParseResult TensorLiteralParser::parseElement() {
  switch (p.getToken().getKind()) {
  // Parse a boolean element.
  case Token::kw_true:
  case Token::kw_false:
  case Token::floatliteral:
  case Token::integer:
    storage.emplace_back(/*isNegative=*/false, p.getToken());
    p.consumeToken();
    break;

  // Parse a signed integer or a negative floating-point element.
  case Token::minus:
    p.consumeToken(Token::minus);
    if (!p.getToken().isAny(Token::floatliteral, Token::integer))
      return p.emitError("expected integer or floating point literal");
    storage.emplace_back(/*isNegative=*/true, p.getToken());
    p.consumeToken();
    break;

  default:
    return p.emitError("expected element literal of primitive type");
  }

  return success();
}

/// Parse a list of either lists or elements, returning the dimensions of the
/// parsed sub-tensors in dims. For example:
///   parseList([1, 2, 3]) -> Success, [3]
///   parseList([[1, 2], [3, 4]]) -> Success, [2, 2]
///   parseList([[1, 2], 3]) -> Failure
///   parseList([[1, [2, 3]], [4, [5]]]) -> Failure
ParseResult TensorLiteralParser::parseList(SmallVectorImpl<int64_t> &dims) {
  p.consumeToken(Token::l_square);

  auto checkDims = [&](const SmallVectorImpl<int64_t> &prevDims,
                       const SmallVectorImpl<int64_t> &newDims) -> ParseResult {
    if (prevDims == newDims)
      return success();
    return p.emitError("tensor literal is invalid; ranks are not consistent "
                       "between elements");
  };

  bool first = true;
  SmallVector<int64_t, 4> newDims;
  unsigned size = 0;
  auto parseCommaSeparatedList = [&]() -> ParseResult {
    SmallVector<int64_t, 4> thisDims;
    if (p.getToken().getKind() == Token::l_square) {
      if (parseList(thisDims))
        return failure();
    } else if (parseElement()) {
      return failure();
    }
    ++size;
    if (!first)
      return checkDims(newDims, thisDims);
    newDims = thisDims;
    first = false;
    return success();
  };
  if (p.parseCommaSeparatedListUntil(Token::r_square, parseCommaSeparatedList))
    return failure();

  // Return the sublists' dimensions with 'size' prepended.
  dims.clear();
  dims.push_back(size);
  dims.append(newDims.begin(), newDims.end());
  return success();
}

/// Parse a dense elements attribute.
Attribute Parser::parseDenseElementsAttr() {
  consumeToken(Token::kw_dense);
  if (parseToken(Token::less, "expected '<' after 'dense'"))
    return nullptr;

  // Parse the literal data.
  TensorLiteralParser literalParser(*this);
  if (literalParser.parse())
    return nullptr;

  if (parseToken(Token::greater, "expected '>'") ||
      parseToken(Token::colon, "expected ':'"))
    return nullptr;

  auto typeLoc = getToken().getLoc();
  auto type = parseElementsLiteralType();
  if (!type)
    return nullptr;
  return literalParser.getAttr(typeLoc, type);
}

/// Shaped type for elements attribute.
///
///   elements-literal-type ::= vector-type | ranked-tensor-type
///
/// This method also checks the type has static shape.
ShapedType Parser::parseElementsLiteralType() {
  auto type = parseType();
  if (!type)
    return nullptr;

  if (!type.isa<RankedTensorType>() && !type.isa<VectorType>()) {
    emitError("elements literal must be a ranked tensor or vector type");
    return nullptr;
  }

  auto sType = type.cast<ShapedType>();
  if (!sType.hasStaticShape())
    return (emitError("elements literal type must have static shape"), nullptr);

  return sType;
}

/// Parse a sparse elements attribute.
Attribute Parser::parseSparseElementsAttr() {
  consumeToken(Token::kw_sparse);
  if (parseToken(Token::less, "Expected '<' after 'sparse'"))
    return nullptr;

  /// Parse indices
  auto indicesLoc = getToken().getLoc();
  TensorLiteralParser indiceParser(*this);
  if (indiceParser.parse())
    return nullptr;

  if (parseToken(Token::comma, "expected ','"))
    return nullptr;

  /// Parse values.
  auto valuesLoc = getToken().getLoc();
  TensorLiteralParser valuesParser(*this);
  if (valuesParser.parse())
    return nullptr;

  if (parseToken(Token::greater, "expected '>'") ||
      parseToken(Token::colon, "expected ':'"))
    return nullptr;

  auto type = parseElementsLiteralType();
  if (!type)
    return nullptr;

  // If the indices are a splat, i.e. the literal parser parsed an element and
  // not a list, we set the shape explicitly. The indices are represented by a
  // 2-dimensional shape where the second dimension is the rank of the type.
  // Given that the parsed indices is a splat, we know that we only have one
  // indice and thus one for the first dimension.
  auto indiceEltType = builder.getIntegerType(64);
  ShapedType indicesType;
  if (indiceParser.getShape().empty()) {
    indicesType = RankedTensorType::get({1, type.getRank()}, indiceEltType);
  } else {
    // Otherwise, set the shape to the one parsed by the literal parser.
    indicesType = RankedTensorType::get(indiceParser.getShape(), indiceEltType);
  }
  auto indices = indiceParser.getAttr(indicesLoc, indicesType);

  // If the values are a splat, set the shape explicitly based on the number of
  // indices. The number of indices is encoded in the first dimension of the
  // indice shape type.
  auto valuesEltType = type.getElementType();
  ShapedType valuesType =
      valuesParser.getShape().empty()
          ? RankedTensorType::get({indicesType.getDimSize(0)}, valuesEltType)
          : RankedTensorType::get(valuesParser.getShape(), valuesEltType);
  auto values = valuesParser.getAttr(valuesLoc, valuesType);

  /// Sanity check.
  if (valuesType.getRank() != 1)
    return (emitError("expected 1-d tensor for values"), nullptr);

  auto sameShape = (indicesType.getRank() == 1) ||
                   (type.getRank() == indicesType.getDimSize(1));
  auto sameElementNum = indicesType.getDimSize(0) == valuesType.getDimSize(0);
  if (!sameShape || !sameElementNum) {
    emitError() << "expected shape ([" << type.getShape()
                << "]); inferred shape of indices literal (["
                << indicesType.getShape()
                << "]); inferred shape of values literal (["
                << valuesType.getShape() << "])";
    return nullptr;
  }

  // Build the sparse elements attribute by the indices and values.
  return SparseElementsAttr::get(type, indices, values);
}

//===----------------------------------------------------------------------===//
// Location parsing.
//===----------------------------------------------------------------------===//

/// Parse a location.
///
///   location           ::= `loc` inline-location
///   inline-location    ::= '(' location-inst ')'
///
ParseResult Parser::parseLocation(LocationAttr &loc) {
  // Check for 'loc' identifier.
  if (parseToken(Token::kw_loc, "expected 'loc' keyword"))
    return emitError();

  // Parse the inline-location.
  if (parseToken(Token::l_paren, "expected '(' in inline location") ||
      parseLocationInstance(loc) ||
      parseToken(Token::r_paren, "expected ')' in inline location"))
    return failure();
  return success();
}

/// Specific location instances.
///
/// location-inst ::= filelinecol-location |
///                   name-location |
///                   callsite-location |
///                   fused-location |
///                   unknown-location
/// filelinecol-location ::= string-literal ':' integer-literal
///                                         ':' integer-literal
/// name-location ::= string-literal
/// callsite-location ::= 'callsite' '(' location-inst 'at' location-inst ')'
/// fused-location ::= fused ('<' attribute-value '>')?
///                    '[' location-inst (location-inst ',')* ']'
/// unknown-location ::= 'unknown'
///
ParseResult Parser::parseCallSiteLocation(LocationAttr &loc) {
  consumeToken(Token::bare_identifier);

  // Parse the '('.
  if (parseToken(Token::l_paren, "expected '(' in callsite location"))
    return failure();

  // Parse the callee location.
  LocationAttr calleeLoc;
  if (parseLocationInstance(calleeLoc))
    return failure();

  // Parse the 'at'.
  if (getToken().isNot(Token::bare_identifier) ||
      getToken().getSpelling() != "at")
    return emitError("expected 'at' in callsite location");
  consumeToken(Token::bare_identifier);

  // Parse the caller location.
  LocationAttr callerLoc;
  if (parseLocationInstance(callerLoc))
    return failure();

  // Parse the ')'.
  if (parseToken(Token::r_paren, "expected ')' in callsite location"))
    return failure();

  // Return the callsite location.
  loc = CallSiteLoc::get(calleeLoc, callerLoc);
  return success();
}

ParseResult Parser::parseFusedLocation(LocationAttr &loc) {
  consumeToken(Token::bare_identifier);

  // Try to parse the optional metadata.
  Attribute metadata;
  if (consumeIf(Token::less)) {
    metadata = parseAttribute();
    if (!metadata)
      return emitError("expected valid attribute metadata");
    // Parse the '>' token.
    if (parseToken(Token::greater,
                   "expected '>' after fused location metadata"))
      return failure();
  }

  SmallVector<Location, 4> locations;
  auto parseElt = [&] {
    LocationAttr newLoc;
    if (parseLocationInstance(newLoc))
      return failure();
    locations.push_back(newLoc);
    return success();
  };

  if (parseToken(Token::l_square, "expected '[' in fused location") ||
      parseCommaSeparatedList(parseElt) ||
      parseToken(Token::r_square, "expected ']' in fused location"))
    return failure();

  // Return the fused location.
  loc = FusedLoc::get(locations, metadata, getContext());
  return success();
}

ParseResult Parser::parseNameOrFileLineColLocation(LocationAttr &loc) {
  auto *ctx = getContext();
  auto str = getToken().getStringValue();
  consumeToken(Token::string);

  // If the next token is ':' this is a filelinecol location.
  if (consumeIf(Token::colon)) {
    // Parse the line number.
    if (getToken().isNot(Token::integer))
      return emitError("expected integer line number in FileLineColLoc");
    auto line = getToken().getUnsignedIntegerValue();
    if (!line.hasValue())
      return emitError("expected integer line number in FileLineColLoc");
    consumeToken(Token::integer);

    // Parse the ':'.
    if (parseToken(Token::colon, "expected ':' in FileLineColLoc"))
      return failure();

    // Parse the column number.
    if (getToken().isNot(Token::integer))
      return emitError("expected integer column number in FileLineColLoc");
    auto column = getToken().getUnsignedIntegerValue();
    if (!column.hasValue())
      return emitError("expected integer column number in FileLineColLoc");
    consumeToken(Token::integer);

    loc = FileLineColLoc::get(str, line.getValue(), column.getValue(), ctx);
    return success();
  }

  // Otherwise, this is a NameLoc.

  // Check for a child location.
  if (consumeIf(Token::l_paren)) {
    auto childSourceLoc = getToken().getLoc();

    // Parse the child location.
    LocationAttr childLoc;
    if (parseLocationInstance(childLoc))
      return failure();

    // The child must not be another NameLoc.
    if (childLoc.isa<NameLoc>())
      return emitError(childSourceLoc,
                       "child of NameLoc cannot be another NameLoc");
    loc = NameLoc::get(Identifier::get(str, ctx), childLoc);

    // Parse the closing ')'.
    if (parseToken(Token::r_paren,
                   "expected ')' after child location of NameLoc"))
      return failure();
  } else {
    loc = NameLoc::get(Identifier::get(str, ctx), ctx);
  }

  return success();
}

ParseResult Parser::parseLocationInstance(LocationAttr &loc) {
  // Handle either name or filelinecol locations.
  if (getToken().is(Token::string))
    return parseNameOrFileLineColLocation(loc);

  // Bare tokens required for other cases.
  if (!getToken().is(Token::bare_identifier))
    return emitError("expected location instance");

  // Check for the 'callsite' signifying a callsite location.
  if (getToken().getSpelling() == "callsite")
    return parseCallSiteLocation(loc);

  // If the token is 'fused', then this is a fused location.
  if (getToken().getSpelling() == "fused")
    return parseFusedLocation(loc);

  // Check for a 'unknown' for an unknown location.
  if (getToken().getSpelling() == "unknown") {
    consumeToken(Token::bare_identifier);
    loc = UnknownLoc::get(getContext());
    return success();
  }

  return emitError("expected location instance");
}

//===----------------------------------------------------------------------===//
// Affine parsing.
//===----------------------------------------------------------------------===//

/// Lower precedence ops (all at the same precedence level). LNoOp is false in
/// the boolean sense.
enum AffineLowPrecOp {
  /// Null value.
  LNoOp,
  Add,
  Sub
};

/// Higher precedence ops - all at the same precedence level. HNoOp is false
/// in the boolean sense.
enum AffineHighPrecOp {
  /// Null value.
  HNoOp,
  Mul,
  FloorDiv,
  CeilDiv,
  Mod
};

namespace {
/// This is a specialized parser for affine structures (affine maps, affine
/// expressions, and integer sets), maintaining the state transient to their
/// bodies.
class AffineParser : public Parser {
public:
  AffineParser(ParserState &state, bool allowParsingSSAIds = false,
               function_ref<ParseResult(bool)> parseElement = nullptr)
      : Parser(state), allowParsingSSAIds(allowParsingSSAIds),
        parseElement(parseElement), numDimOperands(0), numSymbolOperands(0) {}

  AffineMap parseAffineMapRange(unsigned numDims, unsigned numSymbols);
  ParseResult parseAffineMapOrIntegerSetInline(AffineMap &map, IntegerSet &set);
  IntegerSet parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols);
  ParseResult parseAffineMapOfSSAIds(AffineMap &map);
  void getDimsAndSymbolSSAIds(SmallVectorImpl<StringRef> &dimAndSymbolSSAIds,
                              unsigned &numDims);

private:
  // Binary affine op parsing.
  AffineLowPrecOp consumeIfLowPrecOp();
  AffineHighPrecOp consumeIfHighPrecOp();

  // Identifier lists for polyhedral structures.
  ParseResult parseDimIdList(unsigned &numDims);
  ParseResult parseSymbolIdList(unsigned &numSymbols);
  ParseResult parseDimAndOptionalSymbolIdList(unsigned &numDims,
                                              unsigned &numSymbols);
  ParseResult parseIdentifierDefinition(AffineExpr idExpr);

  AffineExpr parseAffineExpr();
  AffineExpr parseParentheticalExpr();
  AffineExpr parseNegateExpression(AffineExpr lhs);
  AffineExpr parseIntegerExpr();
  AffineExpr parseBareIdExpr();
  AffineExpr parseSSAIdExpr(bool isSymbol);
  AffineExpr parseSymbolSSAIdExpr();

  AffineExpr getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs,
                                   AffineExpr rhs, SMLoc opLoc);
  AffineExpr getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs,
                                   AffineExpr rhs);
  AffineExpr parseAffineOperandExpr(AffineExpr lhs);
  AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp);
  AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp,
                                       SMLoc llhsOpLoc);
  AffineExpr parseAffineConstraint(bool *isEq);

private:
  bool allowParsingSSAIds;
  function_ref<ParseResult(bool)> parseElement;
  unsigned numDimOperands;
  unsigned numSymbolOperands;
  SmallVector<std::pair<StringRef, AffineExpr>, 4> dimsAndSymbols;
};
} // end anonymous namespace

/// Create an affine binary high precedence op expression (mul's, div's, mod).
/// opLoc is the location of the op token to be used to report errors
/// for non-conforming expressions.
AffineExpr AffineParser::getAffineBinaryOpExpr(AffineHighPrecOp op,
                                               AffineExpr lhs, AffineExpr rhs,
                                               SMLoc opLoc) {
  // TODO: make the error location info accurate.
  switch (op) {
  case Mul:
    if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) {
      emitError(opLoc, "non-affine expression: at least one of the multiply "
                       "operands has to be either a constant or symbolic");
      return nullptr;
    }
    return lhs * rhs;
  case FloorDiv:
    if (!rhs.isSymbolicOrConstant()) {
      emitError(opLoc, "non-affine expression: right operand of floordiv "
                       "has to be either a constant or symbolic");
      return nullptr;
    }
    return lhs.floorDiv(rhs);
  case CeilDiv:
    if (!rhs.isSymbolicOrConstant()) {
      emitError(opLoc, "non-affine expression: right operand of ceildiv "
                       "has to be either a constant or symbolic");
      return nullptr;
    }
    return lhs.ceilDiv(rhs);
  case Mod:
    if (!rhs.isSymbolicOrConstant()) {
      emitError(opLoc, "non-affine expression: right operand of mod "
                       "has to be either a constant or symbolic");
      return nullptr;
    }
    return lhs % rhs;
  case HNoOp:
    llvm_unreachable("can't create affine expression for null high prec op");
    return nullptr;
  }
  llvm_unreachable("Unknown AffineHighPrecOp");
}

/// Create an affine binary low precedence op expression (add, sub).
AffineExpr AffineParser::getAffineBinaryOpExpr(AffineLowPrecOp op,
                                               AffineExpr lhs, AffineExpr rhs) {
  switch (op) {
  case AffineLowPrecOp::Add:
    return lhs + rhs;
  case AffineLowPrecOp::Sub:
    return lhs - rhs;
  case AffineLowPrecOp::LNoOp:
    llvm_unreachable("can't create affine expression for null low prec op");
    return nullptr;
  }
  llvm_unreachable("Unknown AffineLowPrecOp");
}

/// Consume this token if it is a lower precedence affine op (there are only
/// two precedence levels).
AffineLowPrecOp AffineParser::consumeIfLowPrecOp() {
  switch (getToken().getKind()) {
  case Token::plus:
    consumeToken(Token::plus);
    return AffineLowPrecOp::Add;
  case Token::minus:
    consumeToken(Token::minus);
    return AffineLowPrecOp::Sub;
  default:
    return AffineLowPrecOp::LNoOp;
  }
}

/// Consume this token if it is a higher precedence affine op (there are only
/// two precedence levels)
AffineHighPrecOp AffineParser::consumeIfHighPrecOp() {
  switch (getToken().getKind()) {
  case Token::star:
    consumeToken(Token::star);
    return Mul;
  case Token::kw_floordiv:
    consumeToken(Token::kw_floordiv);
    return FloorDiv;
  case Token::kw_ceildiv:
    consumeToken(Token::kw_ceildiv);
    return CeilDiv;
  case Token::kw_mod:
    consumeToken(Token::kw_mod);
    return Mod;
  default:
    return HNoOp;
  }
}

/// Parse a high precedence op expression list: mul, div, and mod are high
/// precedence binary ops, i.e., parse a
///   expr_1 op_1 expr_2 op_2 ... expr_n
/// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod).
/// All affine binary ops are left associative.
/// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is
/// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is
/// null. llhsOpLoc is the location of the llhsOp token that will be used to
/// report an error for non-conforming expressions.
AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs,
                                                   AffineHighPrecOp llhsOp,
                                                   SMLoc llhsOpLoc) {
  AffineExpr lhs = parseAffineOperandExpr(llhs);
  if (!lhs)
    return nullptr;

  // Found an LHS. Parse the remaining expression.
  auto opLoc = getToken().getLoc();
  if (AffineHighPrecOp op = consumeIfHighPrecOp()) {
    if (llhs) {
      AffineExpr expr = getAffineBinaryOpExpr(llhsOp, llhs, lhs, opLoc);
      if (!expr)
        return nullptr;
      return parseAffineHighPrecOpExpr(expr, op, opLoc);
    }
    // No LLHS, get RHS
    return parseAffineHighPrecOpExpr(lhs, op, opLoc);
  }

  // This is the last operand in this expression.
  if (llhs)
    return getAffineBinaryOpExpr(llhsOp, llhs, lhs, llhsOpLoc);

  // No llhs, 'lhs' itself is the expression.
  return lhs;
}

/// Parse an affine expression inside parentheses.
///
///   affine-expr ::= `(` affine-expr `)`
AffineExpr AffineParser::parseParentheticalExpr() {
  if (parseToken(Token::l_paren, "expected '('"))
    return nullptr;
  if (getToken().is(Token::r_paren))
    return (emitError("no expression inside parentheses"), nullptr);

  auto expr = parseAffineExpr();
  if (!expr)
    return nullptr;
  if (parseToken(Token::r_paren, "expected ')'"))
    return nullptr;

  return expr;
}

/// Parse the negation expression.
///
///   affine-expr ::= `-` affine-expr
AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) {
  if (parseToken(Token::minus, "expected '-'"))
    return nullptr;

  AffineExpr operand = parseAffineOperandExpr(lhs);
  // Since negation has the highest precedence of all ops (including high
  // precedence ops) but lower than parentheses, we are only going to use
  // parseAffineOperandExpr instead of parseAffineExpr here.
  if (!operand)
    // Extra error message although parseAffineOperandExpr would have
    // complained. Leads to a better diagnostic.
    return (emitError("missing operand of negation"), nullptr);
  return (-1) * operand;
}

/// Parse a bare id that may appear in an affine expression.
///
///   affine-expr ::= bare-id
AffineExpr AffineParser::parseBareIdExpr() {
  if (getToken().isNot(Token::bare_identifier))
    return (emitError("expected bare identifier"), nullptr);

  StringRef sRef = getTokenSpelling();
  for (auto entry : dimsAndSymbols) {
    if (entry.first == sRef) {
      consumeToken(Token::bare_identifier);
      return entry.second;
    }
  }

  return (emitError("use of undeclared identifier"), nullptr);
}

/// Parse an SSA id which may appear in an affine expression.
AffineExpr AffineParser::parseSSAIdExpr(bool isSymbol) {
  if (!allowParsingSSAIds)
    return (emitError("unexpected ssa identifier"), nullptr);
  if (getToken().isNot(Token::percent_identifier))
    return (emitError("expected ssa identifier"), nullptr);
  auto name = getTokenSpelling();
  // Check if we already parsed this SSA id.
  for (auto entry : dimsAndSymbols) {
    if (entry.first == name) {
      consumeToken(Token::percent_identifier);
      return entry.second;
    }
  }
  // Parse the SSA id and add an AffineDim/SymbolExpr to represent it.
  if (parseElement(isSymbol))
    return (emitError("failed to parse ssa identifier"), nullptr);
  auto idExpr = isSymbol
                    ? getAffineSymbolExpr(numSymbolOperands++, getContext())
                    : getAffineDimExpr(numDimOperands++, getContext());
  dimsAndSymbols.push_back({name, idExpr});
  return idExpr;
}

AffineExpr AffineParser::parseSymbolSSAIdExpr() {
  if (parseToken(Token::kw_symbol, "expected symbol keyword") ||
      parseToken(Token::l_paren, "expected '(' at start of SSA symbol"))
    return nullptr;
  AffineExpr symbolExpr = parseSSAIdExpr(/*isSymbol=*/true);
  if (!symbolExpr)
    return nullptr;
  if (parseToken(Token::r_paren, "expected ')' at end of SSA symbol"))
    return nullptr;
  return symbolExpr;
}

/// Parse a positive integral constant appearing in an affine expression.
///
///   affine-expr ::= integer-literal
AffineExpr AffineParser::parseIntegerExpr() {
  auto val = getToken().getUInt64IntegerValue();
  if (!val.hasValue() || (int64_t)val.getValue() < 0)
    return (emitError("constant too large for index"), nullptr);

  consumeToken(Token::integer);
  return builder.getAffineConstantExpr((int64_t)val.getValue());
}

/// Parses an expression that can be a valid operand of an affine expression.
/// lhs: if non-null, lhs is an affine expression that is the lhs of a binary
/// operator, the rhs of which is being parsed. This is used to determine
/// whether an error should be emitted for a missing right operand.
//  Eg: for an expression without parentheses (like i + j + k + l), each
//  of the four identifiers is an operand. For i + j*k + l, j*k is not an
//  operand expression, it's an op expression and will be parsed via
//  parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and
//  -l are valid operands that will be parsed by this function.
AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) {
  switch (getToken().getKind()) {
  case Token::bare_identifier:
    return parseBareIdExpr();
  case Token::kw_symbol:
    return parseSymbolSSAIdExpr();
  case Token::percent_identifier:
    return parseSSAIdExpr(/*isSymbol=*/false);
  case Token::integer:
    return parseIntegerExpr();
  case Token::l_paren:
    return parseParentheticalExpr();
  case Token::minus:
    return parseNegateExpression(lhs);
  case Token::kw_ceildiv:
  case Token::kw_floordiv:
  case Token::kw_mod:
  case Token::plus:
  case Token::star:
    if (lhs)
      emitError("missing right operand of binary operator");
    else
      emitError("missing left operand of binary operator");
    return nullptr;
  default:
    if (lhs)
      emitError("missing right operand of binary operator");
    else
      emitError("expected affine expression");
    return nullptr;
  }
}

/// Parse affine expressions that are bare-id's, integer constants,
/// parenthetical affine expressions, and affine op expressions that are a
/// composition of those.
///
/// All binary op's associate from left to right.
///
/// {add, sub} have lower precedence than {mul, div, and mod}.
///
/// Add, sub'are themselves at the same precedence level. Mul, floordiv,
/// ceildiv, and mod are at the same higher precedence level. Negation has
/// higher precedence than any binary op.
///
/// llhs: the affine expression appearing on the left of the one being parsed.
/// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null,
/// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned
/// if llhs is non-null; otherwise lhs is returned. This is to deal with left
/// associativity.
///
/// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function
/// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where
/// (e2*e3) will be parsed using parseAffineHighPrecOpExpr().
AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs,
                                                  AffineLowPrecOp llhsOp) {
  AffineExpr lhs;
  if (!(lhs = parseAffineOperandExpr(llhs)))
    return nullptr;

  // Found an LHS. Deal with the ops.
  if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) {
    if (llhs) {
      AffineExpr sum = getAffineBinaryOpExpr(llhsOp, llhs, lhs);
      return parseAffineLowPrecOpExpr(sum, lOp);
    }
    // No LLHS, get RHS and form the expression.
    return parseAffineLowPrecOpExpr(lhs, lOp);
  }
  auto opLoc = getToken().getLoc();
  if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) {
    // We have a higher precedence op here. Get the rhs operand for the llhs
    // through parseAffineHighPrecOpExpr.
    AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc);
    if (!highRes)
      return nullptr;

    // If llhs is null, the product forms the first operand of the yet to be
    // found expression. If non-null, the op to associate with llhs is llhsOp.
    AffineExpr expr =
        llhs ? getAffineBinaryOpExpr(llhsOp, llhs, highRes) : highRes;

    // Recurse for subsequent low prec op's after the affine high prec op
    // expression.
    if (AffineLowPrecOp nextOp = consumeIfLowPrecOp())
      return parseAffineLowPrecOpExpr(expr, nextOp);
    return expr;
  }
  // Last operand in the expression list.
  if (llhs)
    return getAffineBinaryOpExpr(llhsOp, llhs, lhs);
  // No llhs, 'lhs' itself is the expression.
  return lhs;
}

/// Parse an affine expression.
///  affine-expr ::= `(` affine-expr `)`
///                | `-` affine-expr
///                | affine-expr `+` affine-expr
///                | affine-expr `-` affine-expr
///                | affine-expr `*` affine-expr
///                | affine-expr `floordiv` affine-expr
///                | affine-expr `ceildiv` affine-expr
///                | affine-expr `mod` affine-expr
///                | bare-id
///                | integer-literal
///
/// Additional conditions are checked depending on the production. For eg.,
/// one of the operands for `*` has to be either constant/symbolic; the second
/// operand for floordiv, ceildiv, and mod has to be a positive integer.
AffineExpr AffineParser::parseAffineExpr() {
  return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp);
}

/// Parse a dim or symbol from the lists appearing before the actual
/// expressions of the affine map. Update our state to store the
/// dimensional/symbolic identifier.
ParseResult AffineParser::parseIdentifierDefinition(AffineExpr idExpr) {
  if (getToken().isNot(Token::bare_identifier))
    return emitError("expected bare identifier");

  auto name = getTokenSpelling();
  for (auto entry : dimsAndSymbols) {
    if (entry.first == name)
      return emitError("redefinition of identifier '" + name + "'");
  }
  consumeToken(Token::bare_identifier);

  dimsAndSymbols.push_back({name, idExpr});
  return success();
}

/// Parse the list of dimensional identifiers to an affine map.
ParseResult AffineParser::parseDimIdList(unsigned &numDims) {
  if (parseToken(Token::l_paren,
                 "expected '(' at start of dimensional identifiers list")) {
    return failure();
  }

  auto parseElt = [&]() -> ParseResult {
    auto dimension = getAffineDimExpr(numDims++, getContext());
    return parseIdentifierDefinition(dimension);
  };
  return parseCommaSeparatedListUntil(Token::r_paren, parseElt);
}

/// Parse the list of symbolic identifiers to an affine map.
ParseResult AffineParser::parseSymbolIdList(unsigned &numSymbols) {
  consumeToken(Token::l_square);
  auto parseElt = [&]() -> ParseResult {
    auto symbol = getAffineSymbolExpr(numSymbols++, getContext());
    return parseIdentifierDefinition(symbol);
  };
  return parseCommaSeparatedListUntil(Token::r_square, parseElt);
}

/// Parse the list of symbolic identifiers to an affine map.
ParseResult
AffineParser::parseDimAndOptionalSymbolIdList(unsigned &numDims,
                                              unsigned &numSymbols) {
  if (parseDimIdList(numDims)) {
    return failure();
  }
  if (!getToken().is(Token::l_square)) {
    numSymbols = 0;
    return success();
  }
  return parseSymbolIdList(numSymbols);
}

/// Parses an ambiguous affine map or integer set definition inline.
ParseResult AffineParser::parseAffineMapOrIntegerSetInline(AffineMap &map,
                                                           IntegerSet &set) {
  unsigned numDims = 0, numSymbols = 0;

  // List of dimensional and optional symbol identifiers.
  if (parseDimAndOptionalSymbolIdList(numDims, numSymbols)) {
    return failure();
  }

  // This is needed for parsing attributes as we wouldn't know whether we would
  // be parsing an integer set attribute or an affine map attribute.
  bool isArrow = getToken().is(Token::arrow);
  bool isColon = getToken().is(Token::colon);
  if (!isArrow && !isColon) {
    return emitError("expected '->' or ':'");
  } else if (isArrow) {
    parseToken(Token::arrow, "expected '->' or '['");
    map = parseAffineMapRange(numDims, numSymbols);
    return map ? success() : failure();
  } else if (parseToken(Token::colon, "expected ':' or '['")) {
    return failure();
  }

  if ((set = parseIntegerSetConstraints(numDims, numSymbols)))
    return success();

  return failure();
}

/// Parse an AffineMap where the dim and symbol identifiers are SSA ids.
ParseResult AffineParser::parseAffineMapOfSSAIds(AffineMap &map) {
  if (parseToken(Token::l_square, "expected '['"))
    return failure();

  SmallVector<AffineExpr, 4> exprs;
  auto parseElt = [&]() -> ParseResult {
    auto elt = parseAffineExpr();
    exprs.push_back(elt);
    return elt ? success() : failure();
  };

  // Parse a multi-dimensional affine expression (a comma-separated list of
  // 1-d affine expressions); the list cannot be empty. Grammar:
  // multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)
  if (parseCommaSeparatedListUntil(Token::r_square, parseElt,
                                   /*allowEmptyList=*/true))
    return failure();
  // Parsed a valid affine map.
  if (exprs.empty())
    map = AffineMap::get(getContext());
  else
    map = AffineMap::get(numDimOperands, dimsAndSymbols.size() - numDimOperands,
                         exprs);
  return success();
}

/// Parse the range and sizes affine map definition inline.
///
///  affine-map ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr
///
///  multi-dim-affine-expr ::= `(` `)`
///  multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)`
AffineMap AffineParser::parseAffineMapRange(unsigned numDims,
                                            unsigned numSymbols) {
  parseToken(Token::l_paren, "expected '(' at start of affine map range");

  SmallVector<AffineExpr, 4> exprs;
  auto parseElt = [&]() -> ParseResult {
    auto elt = parseAffineExpr();
    ParseResult res = elt ? success() : failure();
    exprs.push_back(elt);
    return res;
  };

  // Parse a multi-dimensional affine expression (a comma-separated list of
  // 1-d affine expressions); the list cannot be empty. Grammar:
  // multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)
  if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true))
    return AffineMap();

  if (exprs.empty())
    return AffineMap::get(getContext());

  // Parsed a valid affine map.
  return AffineMap::get(numDims, numSymbols, exprs);
}

/// Parse an affine constraint.
///  affine-constraint ::= affine-expr `>=` `0`
///                      | affine-expr `==` `0`
///
/// isEq is set to true if the parsed constraint is an equality, false if it
/// is an inequality (greater than or equal).
///
AffineExpr AffineParser::parseAffineConstraint(bool *isEq) {
  AffineExpr expr = parseAffineExpr();
  if (!expr)
    return nullptr;

  if (consumeIf(Token::greater) && consumeIf(Token::equal) &&
      getToken().is(Token::integer)) {
    auto dim = getToken().getUnsignedIntegerValue();
    if (dim.hasValue() && dim.getValue() == 0) {
      consumeToken(Token::integer);
      *isEq = false;
      return expr;
    }
    return (emitError("expected '0' after '>='"), nullptr);
  }

  if (consumeIf(Token::equal) && consumeIf(Token::equal) &&
      getToken().is(Token::integer)) {
    auto dim = getToken().getUnsignedIntegerValue();
    if (dim.hasValue() && dim.getValue() == 0) {
      consumeToken(Token::integer);
      *isEq = true;
      return expr;
    }
    return (emitError("expected '0' after '=='"), nullptr);
  }

  return (emitError("expected '== 0' or '>= 0' at end of affine constraint"),
          nullptr);
}

/// Parse the constraints that are part of an integer set definition.
///  integer-set-inline
///                ::= dim-and-symbol-id-lists `:`
///                '(' affine-constraint-conjunction? ')'
///  affine-constraint-conjunction ::= affine-constraint (`,`
///                                       affine-constraint)*
///
IntegerSet AffineParser::parseIntegerSetConstraints(unsigned numDims,
                                                    unsigned numSymbols) {
  if (parseToken(Token::l_paren,
                 "expected '(' at start of integer set constraint list"))
    return IntegerSet();

  SmallVector<AffineExpr, 4> constraints;
  SmallVector<bool, 4> isEqs;
  auto parseElt = [&]() -> ParseResult {
    bool isEq;
    auto elt = parseAffineConstraint(&isEq);
    ParseResult res = elt ? success() : failure();
    if (elt) {
      constraints.push_back(elt);
      isEqs.push_back(isEq);
    }
    return res;
  };

  // Parse a list of affine constraints (comma-separated).
  if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true))
    return IntegerSet();

  // If no constraints were parsed, then treat this as a degenerate 'true' case.
  if (constraints.empty()) {
    /* 0 == 0 */
    auto zero = getAffineConstantExpr(0, getContext());
    return IntegerSet::get(numDims, numSymbols, zero, true);
  }

  // Parsed a valid integer set.
  return IntegerSet::get(numDims, numSymbols, constraints, isEqs);
}

/// Parse an ambiguous reference to either and affine map or an integer set.
ParseResult Parser::parseAffineMapOrIntegerSetReference(AffineMap &map,
                                                        IntegerSet &set) {
  return AffineParser(state).parseAffineMapOrIntegerSetInline(map, set);
}
ParseResult Parser::parseAffineMapReference(AffineMap &map) {
  llvm::SMLoc curLoc = getToken().getLoc();
  IntegerSet set;
  if (parseAffineMapOrIntegerSetReference(map, set))
    return failure();
  if (set)
    return emitError(curLoc, "expected AffineMap, but got IntegerSet");
  return success();
}
ParseResult Parser::parseIntegerSetReference(IntegerSet &set) {
  llvm::SMLoc curLoc = getToken().getLoc();
  AffineMap map;
  if (parseAffineMapOrIntegerSetReference(map, set))
    return failure();
  if (map)
    return emitError(curLoc, "expected IntegerSet, but got AffineMap");
  return success();
}

/// Parse an AffineMap of SSA ids. The callback 'parseElement' is used to
/// parse SSA value uses encountered while parsing affine expressions.
ParseResult
Parser::parseAffineMapOfSSAIds(AffineMap &map,
                               function_ref<ParseResult(bool)> parseElement) {
  return AffineParser(state, /*allowParsingSSAIds=*/true, parseElement)
      .parseAffineMapOfSSAIds(map);
}

//===----------------------------------------------------------------------===//
// OperationParser
//===----------------------------------------------------------------------===//

namespace {
/// This class provides support for parsing operations and regions of
/// operations.
class OperationParser : public Parser {
public:
  OperationParser(ParserState &state, ModuleOp moduleOp)
      : Parser(state), opBuilder(moduleOp.getBodyRegion()), moduleOp(moduleOp) {
  }

  ~OperationParser();

  /// After parsing is finished, this function must be called to see if there
  /// are any remaining issues.
  ParseResult finalize();

  //===--------------------------------------------------------------------===//
  // SSA Value Handling
  //===--------------------------------------------------------------------===//

  /// This represents a use of an SSA value in the program.  The first two
  /// entries in the tuple are the name and result number of a reference.  The
  /// third is the location of the reference, which is used in case this ends
  /// up being a use of an undefined value.
  struct SSAUseInfo {
    StringRef name;  // Value name, e.g. %42 or %abc
    unsigned number; // Number, specified with #12
    SMLoc loc;       // Location of first definition or use.
  };

  /// Push a new SSA name scope to the parser.
  void pushSSANameScope(bool isIsolated);

  /// Pop the last SSA name scope from the parser.
  ParseResult popSSANameScope();

  /// Register a definition of a value with the symbol table.
  ParseResult addDefinition(SSAUseInfo useInfo, Value value);

  /// Parse an optional list of SSA uses into 'results'.
  ParseResult parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results);

  /// Parse a single SSA use into 'result'.
  ParseResult parseSSAUse(SSAUseInfo &result);

  /// Given a reference to an SSA value and its type, return a reference. This
  /// returns null on failure.
  Value resolveSSAUse(SSAUseInfo useInfo, Type type);

  ParseResult parseSSADefOrUseAndType(
      const std::function<ParseResult(SSAUseInfo, Type)> &action);

  ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value> &results);

  /// Return the location of the value identified by its name and number if it
  /// has been already reference.
  Optional<SMLoc> getReferenceLoc(StringRef name, unsigned number) {
    auto &values = isolatedNameScopes.back().values;
    if (!values.count(name) || number >= values[name].size())
      return {};
    if (values[name][number].first)
      return values[name][number].second;
    return {};
  }

  //===--------------------------------------------------------------------===//
  // Operation Parsing
  //===--------------------------------------------------------------------===//

  /// Parse an operation instance.
  ParseResult parseOperation();

  /// Parse a single operation successor and its operand list.
  ParseResult parseSuccessorAndUseList(Block *&dest,
                                       SmallVectorImpl<Value> &operands);

  /// Parse a comma-separated list of operation successors in brackets.
  ParseResult parseSuccessors(SmallVectorImpl<Block *> &destinations,
                              SmallVectorImpl<SmallVector<Value, 4>> &operands);

  /// Parse an operation instance that is in the generic form.
  Operation *parseGenericOperation();

  /// Parse an operation instance that is in the generic form and insert it at
  /// the provided insertion point.
  Operation *parseGenericOperation(Block *insertBlock,
                                   Block::iterator insertPt);

  /// Parse an operation instance that is in the op-defined custom form.
  Operation *parseCustomOperation();

  //===--------------------------------------------------------------------===//
  // Region Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a region into 'region' with the provided entry block arguments.
  /// 'isIsolatedNameScope' indicates if the naming scope of this region is
  /// isolated from those above.
  ParseResult parseRegion(Region &region,
                          ArrayRef<std::pair<SSAUseInfo, Type>> entryArguments,
                          bool isIsolatedNameScope = false);

  /// Parse a region body into 'region'.
  ParseResult parseRegionBody(Region &region);

  //===--------------------------------------------------------------------===//
  // Block Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a new block into 'block'.
  ParseResult parseBlock(Block *&block);

  /// Parse a list of operations into 'block'.
  ParseResult parseBlockBody(Block *block);

  /// Parse a (possibly empty) list of block arguments.
  ParseResult parseOptionalBlockArgList(SmallVectorImpl<BlockArgument> &results,
                                        Block *owner);

  /// Get the block with the specified name, creating it if it doesn't
  /// already exist.  The location specified is the point of use, which allows
  /// us to diagnose references to blocks that are not defined precisely.
  Block *getBlockNamed(StringRef name, SMLoc loc);

  /// Define the block with the specified name. Returns the Block* or nullptr in
  /// the case of redefinition.
  Block *defineBlockNamed(StringRef name, SMLoc loc, Block *existing);

private:
  /// Returns the info for a block at the current scope for the given name.
  std::pair<Block *, SMLoc> &getBlockInfoByName(StringRef name) {
    return blocksByName.back()[name];
  }

  /// Insert a new forward reference to the given block.
  void insertForwardRef(Block *block, SMLoc loc) {
    forwardRef.back().try_emplace(block, loc);
  }

  /// Erase any forward reference to the given block.
  bool eraseForwardRef(Block *block) { return forwardRef.back().erase(block); }

  /// Record that a definition was added at the current scope.
  void recordDefinition(StringRef def);

  /// Get the value entry for the given SSA name.
  SmallVectorImpl<std::pair<Value, SMLoc>> &getSSAValueEntry(StringRef name);

  /// Create a forward reference placeholder value with the given location and
  /// result type.
  Value createForwardRefPlaceholder(SMLoc loc, Type type);

  /// Return true if this is a forward reference.
  bool isForwardRefPlaceholder(Value value) {
    return forwardRefPlaceholders.count(value);
  }

  /// This struct represents an isolated SSA name scope. This scope may contain
  /// other nested non-isolated scopes. These scopes are used for operations
  /// that are known to be isolated to allow for reusing names within their
  /// regions, even if those names are used above.
  struct IsolatedSSANameScope {
    /// Record that a definition was added at the current scope.
    void recordDefinition(StringRef def) {
      definitionsPerScope.back().insert(def);
    }

    /// Push a nested name scope.
    void pushSSANameScope() { definitionsPerScope.push_back({}); }

    /// Pop a nested name scope.
    void popSSANameScope() {
      for (auto &def : definitionsPerScope.pop_back_val())
        values.erase(def.getKey());
    }

    /// This keeps track of all of the SSA values we are tracking for each name
    /// scope, indexed by their name. This has one entry per result number.
    llvm::StringMap<SmallVector<std::pair<Value, SMLoc>, 1>> values;

    /// This keeps track of all of the values defined by a specific name scope.
    SmallVector<llvm::StringSet<>, 2> definitionsPerScope;
  };

  /// A list of isolated name scopes.
  SmallVector<IsolatedSSANameScope, 2> isolatedNameScopes;

  /// This keeps track of the block names as well as the location of the first
  /// reference for each nested name scope. This is used to diagnose invalid
  /// block references and memorize them.
  SmallVector<DenseMap<StringRef, std::pair<Block *, SMLoc>>, 2> blocksByName;
  SmallVector<DenseMap<Block *, SMLoc>, 2> forwardRef;

  /// These are all of the placeholders we've made along with the location of
  /// their first reference, to allow checking for use of undefined values.
  DenseMap<Value, SMLoc> forwardRefPlaceholders;

  /// The builder used when creating parsed operation instances.
  OpBuilder opBuilder;

  /// The top level module operation.
  ModuleOp moduleOp;
};
} // end anonymous namespace

OperationParser::~OperationParser() {
  for (auto &fwd : forwardRefPlaceholders) {
    // Drop all uses of undefined forward declared reference and destroy
    // defining operation.
    fwd.first.dropAllUses();
    fwd.first.getDefiningOp()->destroy();
  }
}

/// After parsing is finished, this function must be called to see if there are
/// any remaining issues.
ParseResult OperationParser::finalize() {
  // Check for any forward references that are left.  If we find any, error
  // out.
  if (!forwardRefPlaceholders.empty()) {
    SmallVector<std::pair<const char *, Value>, 4> errors;
    // Iteration over the map isn't deterministic, so sort by source location.
    for (auto entry : forwardRefPlaceholders)
      errors.push_back({entry.second.getPointer(), entry.first});
    llvm::array_pod_sort(errors.begin(), errors.end());

    for (auto entry : errors) {
      auto loc = SMLoc::getFromPointer(entry.first);
      emitError(loc, "use of undeclared SSA value name");
    }
    return failure();
  }

  return success();
}

//===----------------------------------------------------------------------===//
// SSA Value Handling
//===----------------------------------------------------------------------===//

void OperationParser::pushSSANameScope(bool isIsolated) {
  blocksByName.push_back(DenseMap<StringRef, std::pair<Block *, SMLoc>>());
  forwardRef.push_back(DenseMap<Block *, SMLoc>());

  // Push back a new name definition scope.
  if (isIsolated)
    isolatedNameScopes.push_back({});
  isolatedNameScopes.back().pushSSANameScope();
}

ParseResult OperationParser::popSSANameScope() {
  auto forwardRefInCurrentScope = forwardRef.pop_back_val();

  // Verify that all referenced blocks were defined.
  if (!forwardRefInCurrentScope.empty()) {
    SmallVector<std::pair<const char *, Block *>, 4> errors;
    // Iteration over the map isn't deterministic, so sort by source location.
    for (auto entry : forwardRefInCurrentScope) {
      errors.push_back({entry.second.getPointer(), entry.first});
      // Add this block to the top-level region to allow for automatic cleanup.
      moduleOp.getOperation()->getRegion(0).push_back(entry.first);
    }
    llvm::array_pod_sort(errors.begin(), errors.end());

    for (auto entry : errors) {
      auto loc = SMLoc::getFromPointer(entry.first);
      emitError(loc, "reference to an undefined block");
    }
    return failure();
  }

  // Pop the next nested namescope. If there is only one internal namescope,
  // just pop the isolated scope.
  auto &currentNameScope = isolatedNameScopes.back();
  if (currentNameScope.definitionsPerScope.size() == 1)
    isolatedNameScopes.pop_back();
  else
    currentNameScope.popSSANameScope();

  blocksByName.pop_back();
  return success();
}

/// Register a definition of a value with the symbol table.
ParseResult OperationParser::addDefinition(SSAUseInfo useInfo, Value value) {
  auto &entries = getSSAValueEntry(useInfo.name);

  // Make sure there is a slot for this value.
  if (entries.size() <= useInfo.number)
    entries.resize(useInfo.number + 1);

  // If we already have an entry for this, check to see if it was a definition
  // or a forward reference.
  if (auto existing = entries[useInfo.number].first) {
    if (!isForwardRefPlaceholder(existing)) {
      return emitError(useInfo.loc)
          .append("redefinition of SSA value '", useInfo.name, "'")
          .attachNote(getEncodedSourceLocation(entries[useInfo.number].second))
          .append("previously defined here");
    }

    // If it was a forward reference, update everything that used it to use
    // the actual definition instead, delete the forward ref, and remove it
    // from our set of forward references we track.
    existing.replaceAllUsesWith(value);
    existing.getDefiningOp()->destroy();
    forwardRefPlaceholders.erase(existing);
  }

  /// Record this definition for the current scope.
  entries[useInfo.number] = {value, useInfo.loc};
  recordDefinition(useInfo.name);
  return success();
}

/// Parse a (possibly empty) list of SSA operands.
///
///   ssa-use-list ::= ssa-use (`,` ssa-use)*
///   ssa-use-list-opt ::= ssa-use-list?
///
ParseResult
OperationParser::parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results) {
  if (getToken().isNot(Token::percent_identifier))
    return success();
  return parseCommaSeparatedList([&]() -> ParseResult {
    SSAUseInfo result;
    if (parseSSAUse(result))
      return failure();
    results.push_back(result);
    return success();
  });
}

/// Parse a SSA operand for an operation.
///
///   ssa-use ::= ssa-id
///
ParseResult OperationParser::parseSSAUse(SSAUseInfo &result) {
  result.name = getTokenSpelling();
  result.number = 0;
  result.loc = getToken().getLoc();
  if (parseToken(Token::percent_identifier, "expected SSA operand"))
    return failure();

  // If we have an attribute ID, it is a result number.
  if (getToken().is(Token::hash_identifier)) {
    if (auto value = getToken().getHashIdentifierNumber())
      result.number = value.getValue();
    else
      return emitError("invalid SSA value result number");
    consumeToken(Token::hash_identifier);
  }

  return success();
}

/// Given an unbound reference to an SSA value and its type, return the value
/// it specifies.  This returns null on failure.
Value OperationParser::resolveSSAUse(SSAUseInfo useInfo, Type type) {
  auto &entries = getSSAValueEntry(useInfo.name);

  // If we have already seen a value of this name, return it.
  if (useInfo.number < entries.size() && entries[useInfo.number].first) {
    auto result = entries[useInfo.number].first;
    // Check that the type matches the other uses.
    if (result.getType() == type)
      return result;

    emitError(useInfo.loc, "use of value '")
        .append(useInfo.name,
                "' expects different type than prior uses: ", type, " vs ",
                result.getType())
        .attachNote(getEncodedSourceLocation(entries[useInfo.number].second))
        .append("prior use here");
    return nullptr;
  }

  // Make sure we have enough slots for this.
  if (entries.size() <= useInfo.number)
    entries.resize(useInfo.number + 1);

  // If the value has already been defined and this is an overly large result
  // number, diagnose that.
  if (entries[0].first && !isForwardRefPlaceholder(entries[0].first))
    return (emitError(useInfo.loc, "reference to invalid result number"),
            nullptr);

  // Otherwise, this is a forward reference.  Create a placeholder and remember
  // that we did so.
  auto result = createForwardRefPlaceholder(useInfo.loc, type);
  entries[useInfo.number].first = result;
  entries[useInfo.number].second = useInfo.loc;
  return result;
}

/// Parse an SSA use with an associated type.
///
///   ssa-use-and-type ::= ssa-use `:` type
ParseResult OperationParser::parseSSADefOrUseAndType(
    const std::function<ParseResult(SSAUseInfo, Type)> &action) {
  SSAUseInfo useInfo;
  if (parseSSAUse(useInfo) ||
      parseToken(Token::colon, "expected ':' and type for SSA operand"))
    return failure();

  auto type = parseType();
  if (!type)
    return failure();

  return action(useInfo, type);
}

/// Parse a (possibly empty) list of SSA operands, followed by a colon, then
/// followed by a type list.
///
///   ssa-use-and-type-list
///     ::= ssa-use-list ':' type-list-no-parens
///
ParseResult OperationParser::parseOptionalSSAUseAndTypeList(
    SmallVectorImpl<Value> &results) {
  SmallVector<SSAUseInfo, 4> valueIDs;
  if (parseOptionalSSAUseList(valueIDs))
    return failure();

  // If there were no operands, then there is no colon or type lists.
  if (valueIDs.empty())
    return success();

  SmallVector<Type, 4> types;
  if (parseToken(Token::colon, "expected ':' in operand list") ||
      parseTypeListNoParens(types))
    return failure();

  if (valueIDs.size() != types.size())
    return emitError("expected ")
           << valueIDs.size() << " types to match operand list";

  results.reserve(valueIDs.size());
  for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) {
    if (auto value = resolveSSAUse(valueIDs[i], types[i]))
      results.push_back(value);
    else
      return failure();
  }

  return success();
}

/// Record that a definition was added at the current scope.
void OperationParser::recordDefinition(StringRef def) {
  isolatedNameScopes.back().recordDefinition(def);
}

/// Get the value entry for the given SSA name.
SmallVectorImpl<std::pair<Value, SMLoc>> &
OperationParser::getSSAValueEntry(StringRef name) {
  return isolatedNameScopes.back().values[name];
}

/// Create and remember a new placeholder for a forward reference.
Value OperationParser::createForwardRefPlaceholder(SMLoc loc, Type type) {
  // Forward references are always created as operations, because we just need
  // something with a def/use chain.
  //
  // We create these placeholders as having an empty name, which we know
  // cannot be created through normal user input, allowing us to distinguish
  // them.
  auto name = OperationName("placeholder", getContext());
  auto *op = Operation::create(
      getEncodedSourceLocation(loc), name, type, /*operands=*/{},
      /*attributes=*/llvm::None, /*successors=*/{}, /*numRegions=*/0,
      /*resizableOperandList=*/false);
  forwardRefPlaceholders[op->getResult(0)] = loc;
  return op->getResult(0);
}

//===----------------------------------------------------------------------===//
// Operation Parsing
//===----------------------------------------------------------------------===//

/// Parse an operation.
///
///  operation         ::= op-result-list?
///                        (generic-operation | custom-operation)
///                        trailing-location?
///  generic-operation ::= string-literal '(' ssa-use-list? ')' attribute-dict?
///                        `:` function-type
///  custom-operation  ::= bare-id custom-operation-format
///  op-result-list    ::= op-result (`,` op-result)* `=`
///  op-result         ::= ssa-id (`:` integer-literal)
///
ParseResult OperationParser::parseOperation() {
  auto loc = getToken().getLoc();
  SmallVector<std::tuple<StringRef, unsigned, SMLoc>, 1> resultIDs;
  size_t numExpectedResults = 0;
  if (getToken().is(Token::percent_identifier)) {
    // Parse the group of result ids.
    auto parseNextResult = [&]() -> ParseResult {
      // Parse the next result id.
      if (!getToken().is(Token::percent_identifier))
        return emitError("expected valid ssa identifier");

      Token nameTok = getToken();
      consumeToken(Token::percent_identifier);

      // If the next token is a ':', we parse the expected result count.
      size_t expectedSubResults = 1;
      if (consumeIf(Token::colon)) {
        // Check that the next token is an integer.
        if (!getToken().is(Token::integer))
          return emitError("expected integer number of results");

        // Check that number of results is > 0.
        auto val = getToken().getUInt64IntegerValue();
        if (!val.hasValue() || val.getValue() < 1)
          return emitError("expected named operation to have atleast 1 result");
        consumeToken(Token::integer);
        expectedSubResults = *val;
      }

      resultIDs.emplace_back(nameTok.getSpelling(), expectedSubResults,
                             nameTok.getLoc());
      numExpectedResults += expectedSubResults;
      return success();
    };
    if (parseCommaSeparatedList(parseNextResult))
      return failure();

    if (parseToken(Token::equal, "expected '=' after SSA name"))
      return failure();
  }

  Operation *op;
  if (getToken().is(Token::bare_identifier) || getToken().isKeyword())
    op = parseCustomOperation();
  else if (getToken().is(Token::string))
    op = parseGenericOperation();
  else
    return emitError("expected operation name in quotes");

  // If parsing of the basic operation failed, then this whole thing fails.
  if (!op)
    return failure();

  // If the operation had a name, register it.
  if (!resultIDs.empty()) {
    if (op->getNumResults() == 0)
      return emitError(loc, "cannot name an operation with no results");
    if (numExpectedResults != op->getNumResults())
      return emitError(loc, "operation defines ")
             << op->getNumResults() << " results but was provided "
             << numExpectedResults << " to bind";

    // Add definitions for each of the result groups.
    unsigned opResI = 0;
    for (std::tuple<StringRef, unsigned, SMLoc> &resIt : resultIDs) {
      for (unsigned subRes : llvm::seq<unsigned>(0, std::get<1>(resIt))) {
        if (addDefinition({std::get<0>(resIt), subRes, std::get<2>(resIt)},
                          op->getResult(opResI++)))
          return failure();
      }
    }
  }

  return success();
}

/// Parse a single operation successor and its operand list.
///
///   successor ::= block-id branch-use-list?
///   branch-use-list ::= `(` ssa-use-list ':' type-list-no-parens `)`
///
ParseResult
OperationParser::parseSuccessorAndUseList(Block *&dest,
                                          SmallVectorImpl<Value> &operands) {
  // Verify branch is identifier and get the matching block.
  if (!getToken().is(Token::caret_identifier))
    return emitError("expected block name");
  dest = getBlockNamed(getTokenSpelling(), getToken().getLoc());
  consumeToken();

  // Handle optional arguments.
  if (consumeIf(Token::l_paren) &&
      (parseOptionalSSAUseAndTypeList(operands) ||
       parseToken(Token::r_paren, "expected ')' to close argument list"))) {
    return failure();
  }

  return success();
}

/// Parse a comma-separated list of operation successors in brackets.
///
///   successor-list ::= `[` successor (`,` successor )* `]`
///
ParseResult OperationParser::parseSuccessors(
    SmallVectorImpl<Block *> &destinations,
    SmallVectorImpl<SmallVector<Value, 4>> &operands) {
  if (parseToken(Token::l_square, "expected '['"))
    return failure();

  auto parseElt = [this, &destinations, &operands]() {
    Block *dest;
    SmallVector<Value, 4> destOperands;
    auto res = parseSuccessorAndUseList(dest, destOperands);
    destinations.push_back(dest);
    operands.push_back(destOperands);
    return res;
  };
  return parseCommaSeparatedListUntil(Token::r_square, parseElt,
                                      /*allowEmptyList=*/false);
}

namespace {
// RAII-style guard for cleaning up the regions in the operation state before
// deleting them.  Within the parser, regions may get deleted if parsing failed,
// and other errors may be present, in particular undominated uses.  This makes
// sure such uses are deleted.
struct CleanupOpStateRegions {
  ~CleanupOpStateRegions() {
    SmallVector<Region *, 4> regionsToClean;
    regionsToClean.reserve(state.regions.size());
    for (auto &region : state.regions)
      if (region)
        for (auto &block : *region)
          block.dropAllDefinedValueUses();
  }
  OperationState &state;
};
} // namespace

Operation *OperationParser::parseGenericOperation() {
  // Get location information for the operation.
  auto srcLocation = getEncodedSourceLocation(getToken().getLoc());

  auto name = getToken().getStringValue();
  if (name.empty())
    return (emitError("empty operation name is invalid"), nullptr);
  if (name.find('\0') != StringRef::npos)
    return (emitError("null character not allowed in operation name"), nullptr);

  consumeToken(Token::string);

  OperationState result(srcLocation, name);

  // Generic operations have a resizable operation list.
  result.setOperandListToResizable();

  // Parse the operand list.
  SmallVector<SSAUseInfo, 8> operandInfos;

  if (parseToken(Token::l_paren, "expected '(' to start operand list") ||
      parseOptionalSSAUseList(operandInfos) ||
      parseToken(Token::r_paren, "expected ')' to end operand list")) {
    return nullptr;
  }

  // Parse the successor list but don't add successors to the result yet to
  // avoid messing up with the argument order.
  SmallVector<Block *, 2> successors;
  SmallVector<SmallVector<Value, 4>, 2> successorOperands;
  if (getToken().is(Token::l_square)) {
    // Check if the operation is a known terminator.
    const AbstractOperation *abstractOp = result.name.getAbstractOperation();
    if (abstractOp && !abstractOp->hasProperty(OperationProperty::Terminator))
      return emitError("successors in non-terminator"), nullptr;
    if (parseSuccessors(successors, successorOperands))
      return nullptr;
  }

  // Parse the region list.
  CleanupOpStateRegions guard{result};
  if (consumeIf(Token::l_paren)) {
    do {
      // Create temporary regions with the top level region as parent.
      result.regions.emplace_back(new Region(moduleOp));
      if (parseRegion(*result.regions.back(), /*entryArguments=*/{}))
        return nullptr;
    } while (consumeIf(Token::comma));
    if (parseToken(Token::r_paren, "expected ')' to end region list"))
      return nullptr;
  }

  if (getToken().is(Token::l_brace)) {
    if (parseAttributeDict(result.attributes))
      return nullptr;
  }

  if (parseToken(Token::colon, "expected ':' followed by operation type"))
    return nullptr;

  auto typeLoc = getToken().getLoc();
  auto type = parseType();
  if (!type)
    return nullptr;
  auto fnType = type.dyn_cast<FunctionType>();
  if (!fnType)
    return (emitError(typeLoc, "expected function type"), nullptr);

  result.addTypes(fnType.getResults());

  // Check that we have the right number of types for the operands.
  auto operandTypes = fnType.getInputs();
  if (operandTypes.size() != operandInfos.size()) {
    auto plural = "s"[operandInfos.size() == 1];
    return (emitError(typeLoc, "expected ")
                << operandInfos.size() << " operand type" << plural
                << " but had " << operandTypes.size(),
            nullptr);
  }

  // Resolve all of the operands.
  for (unsigned i = 0, e = operandInfos.size(); i != e; ++i) {
    result.operands.push_back(resolveSSAUse(operandInfos[i], operandTypes[i]));
    if (!result.operands.back())
      return nullptr;
  }

  // Add the successors, and their operands after the proper operands.
  for (auto succ : llvm::zip(successors, successorOperands)) {
    Block *successor = std::get<0>(succ);
    const SmallVector<Value, 4> &operands = std::get<1>(succ);
    result.addSuccessor(successor, operands);
  }

  // Parse a location if one is present.
  if (parseOptionalTrailingLocation(result.location))
    return nullptr;

  return opBuilder.createOperation(result);
}

Operation *OperationParser::parseGenericOperation(Block *insertBlock,
                                                  Block::iterator insertPt) {
  OpBuilder::InsertionGuard restoreInsertionPoint(opBuilder);
  opBuilder.setInsertionPoint(insertBlock, insertPt);
  return parseGenericOperation();
}

namespace {
class CustomOpAsmParser : public OpAsmParser {
public:
  CustomOpAsmParser(SMLoc nameLoc, const AbstractOperation *opDefinition,
                    OperationParser &parser)
      : nameLoc(nameLoc), opDefinition(opDefinition), parser(parser) {}

  /// Parse an instance of the operation described by 'opDefinition' into the
  /// provided operation state.
  ParseResult parseOperation(OperationState &opState) {
    if (opDefinition->parseAssembly(*this, opState))
      return failure();
    return success();
  }

  Operation *parseGenericOperation(Block *insertBlock,
                                   Block::iterator insertPt) final {
    return parser.parseGenericOperation(insertBlock, insertPt);
  }

  //===--------------------------------------------------------------------===//
  // Utilities
  //===--------------------------------------------------------------------===//

  /// Return if any errors were emitted during parsing.
  bool didEmitError() const { return emittedError; }

  /// Emit a diagnostic at the specified location and return failure.
  InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override {
    emittedError = true;
    return parser.emitError(loc, "custom op '" + opDefinition->name + "' " +
                                     message);
  }

  llvm::SMLoc getCurrentLocation() override {
    return parser.getToken().getLoc();
  }

  Builder &getBuilder() const override { return parser.builder; }

  llvm::SMLoc getNameLoc() const override { return nameLoc; }

  //===--------------------------------------------------------------------===//
  // Token Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a `->` token.
  ParseResult parseArrow() override {
    return parser.parseToken(Token::arrow, "expected '->'");
  }

  /// Parses a `->` if present.
  ParseResult parseOptionalArrow() override {
    return success(parser.consumeIf(Token::arrow));
  }

  /// Parse a `:` token.
  ParseResult parseColon() override {
    return parser.parseToken(Token::colon, "expected ':'");
  }

  /// Parse a `:` token if present.
  ParseResult parseOptionalColon() override {
    return success(parser.consumeIf(Token::colon));
  }

  /// Parse a `,` token.
  ParseResult parseComma() override {
    return parser.parseToken(Token::comma, "expected ','");
  }

  /// Parse a `,` token if present.
  ParseResult parseOptionalComma() override {
    return success(parser.consumeIf(Token::comma));
  }

  /// Parses a `...` if present.
  ParseResult parseOptionalEllipsis() override {
    return success(parser.consumeIf(Token::ellipsis));
  }

  /// Parse a `=` token.
  ParseResult parseEqual() override {
    return parser.parseToken(Token::equal, "expected '='");
  }

  /// Parse a '<' token.
  ParseResult parseLess() override {
    return parser.parseToken(Token::less, "expected '<'");
  }

  /// Parse a '>' token.
  ParseResult parseGreater() override {
    return parser.parseToken(Token::greater, "expected '>'");
  }

  /// Parse a `(` token.
  ParseResult parseLParen() override {
    return parser.parseToken(Token::l_paren, "expected '('");
  }

  /// Parses a '(' if present.
  ParseResult parseOptionalLParen() override {
    return success(parser.consumeIf(Token::l_paren));
  }

  /// Parse a `)` token.
  ParseResult parseRParen() override {
    return parser.parseToken(Token::r_paren, "expected ')'");
  }

  /// Parses a ')' if present.
  ParseResult parseOptionalRParen() override {
    return success(parser.consumeIf(Token::r_paren));
  }

  /// Parse a `[` token.
  ParseResult parseLSquare() override {
    return parser.parseToken(Token::l_square, "expected '['");
  }

  /// Parses a '[' if present.
  ParseResult parseOptionalLSquare() override {
    return success(parser.consumeIf(Token::l_square));
  }

  /// Parse a `]` token.
  ParseResult parseRSquare() override {
    return parser.parseToken(Token::r_square, "expected ']'");
  }

  /// Parses a ']' if present.
  ParseResult parseOptionalRSquare() override {
    return success(parser.consumeIf(Token::r_square));
  }

  //===--------------------------------------------------------------------===//
  // Attribute Parsing
  //===--------------------------------------------------------------------===//

  /// Parse an arbitrary attribute of a given type and return it in result. This
  /// also adds the attribute to the specified attribute list with the specified
  /// name.
  ParseResult parseAttribute(Attribute &result, Type type, StringRef attrName,
                             SmallVectorImpl<NamedAttribute> &attrs) override {
    result = parser.parseAttribute(type);
    if (!result)
      return failure();

    attrs.push_back(parser.builder.getNamedAttr(attrName, result));
    return success();
  }

  /// Parse a named dictionary into 'result' if it is present.
  ParseResult
  parseOptionalAttrDict(SmallVectorImpl<NamedAttribute> &result) override {
    if (parser.getToken().isNot(Token::l_brace))
      return success();
    return parser.parseAttributeDict(result);
  }

  /// Parse a named dictionary into 'result' if the `attributes` keyword is
  /// present.
  ParseResult parseOptionalAttrDictWithKeyword(
      SmallVectorImpl<NamedAttribute> &result) override {
    if (failed(parseOptionalKeyword("attributes")))
      return success();
    return parser.parseAttributeDict(result);
  }

  /// Parse an affine map instance into 'map'.
  ParseResult parseAffineMap(AffineMap &map) override {
    return parser.parseAffineMapReference(map);
  }

  /// Parse an integer set instance into 'set'.
  ParseResult printIntegerSet(IntegerSet &set) override {
    return parser.parseIntegerSetReference(set);
  }

  //===--------------------------------------------------------------------===//
  // Identifier Parsing
  //===--------------------------------------------------------------------===//

  /// Returns if the current token corresponds to a keyword.
  bool isCurrentTokenAKeyword() const {
    return parser.getToken().is(Token::bare_identifier) ||
           parser.getToken().isKeyword();
  }

  /// Parse the given keyword if present.
  ParseResult parseOptionalKeyword(StringRef keyword) override {
    // Check that the current token has the same spelling.
    if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword)
      return failure();
    parser.consumeToken();
    return success();
  }

  /// Parse a keyword, if present, into 'keyword'.
  ParseResult parseOptionalKeyword(StringRef *keyword) override {
    // Check that the current token is a keyword.
    if (!isCurrentTokenAKeyword())
      return failure();

    *keyword = parser.getTokenSpelling();
    parser.consumeToken();
    return success();
  }

  /// Parse an optional @-identifier and store it (without the '@' symbol) in a
  /// string attribute named 'attrName'.
  ParseResult
  parseOptionalSymbolName(StringAttr &result, StringRef attrName,
                          SmallVectorImpl<NamedAttribute> &attrs) override {
    Token atToken = parser.getToken();
    if (atToken.isNot(Token::at_identifier))
      return failure();

    result = getBuilder().getStringAttr(extractSymbolReference(atToken));
    attrs.push_back(getBuilder().getNamedAttr(attrName, result));
    parser.consumeToken();
    return success();
  }

  //===--------------------------------------------------------------------===//
  // Operand Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a single operand.
  ParseResult parseOperand(OperandType &result) override {
    OperationParser::SSAUseInfo useInfo;
    if (parser.parseSSAUse(useInfo))
      return failure();

    result = {useInfo.loc, useInfo.name, useInfo.number};
    return success();
  }

  /// Parse zero or more SSA comma-separated operand references with a specified
  /// surrounding delimiter, and an optional required operand count.
  ParseResult parseOperandList(SmallVectorImpl<OperandType> &result,
                               int requiredOperandCount = -1,
                               Delimiter delimiter = Delimiter::None) override {
    return parseOperandOrRegionArgList(result, /*isOperandList=*/true,
                                       requiredOperandCount, delimiter);
  }

  /// Parse zero or more SSA comma-separated operand or region arguments with
  ///  optional surrounding delimiter and required operand count.
  ParseResult
  parseOperandOrRegionArgList(SmallVectorImpl<OperandType> &result,
                              bool isOperandList, int requiredOperandCount = -1,
                              Delimiter delimiter = Delimiter::None) {
    auto startLoc = parser.getToken().getLoc();

    // Handle delimiters.
    switch (delimiter) {
    case Delimiter::None:
      // Don't check for the absence of a delimiter if the number of operands
      // is unknown (and hence the operand list could be empty).
      if (requiredOperandCount == -1)
        break;
      // Token already matches an identifier and so can't be a delimiter.
      if (parser.getToken().is(Token::percent_identifier))
        break;
      // Test against known delimiters.
      if (parser.getToken().is(Token::l_paren) ||
          parser.getToken().is(Token::l_square))
        return emitError(startLoc, "unexpected delimiter");
      return emitError(startLoc, "invalid operand");
    case Delimiter::OptionalParen:
      if (parser.getToken().isNot(Token::l_paren))
        return success();
      LLVM_FALLTHROUGH;
    case Delimiter::Paren:
      if (parser.parseToken(Token::l_paren, "expected '(' in operand list"))
        return failure();
      break;
    case Delimiter::OptionalSquare:
      if (parser.getToken().isNot(Token::l_square))
        return success();
      LLVM_FALLTHROUGH;
    case Delimiter::Square:
      if (parser.parseToken(Token::l_square, "expected '[' in operand list"))
        return failure();
      break;
    }

    // Check for zero operands.
    if (parser.getToken().is(Token::percent_identifier)) {
      do {
        OperandType operandOrArg;
        if (isOperandList ? parseOperand(operandOrArg)
                          : parseRegionArgument(operandOrArg))
          return failure();
        result.push_back(operandOrArg);
      } while (parser.consumeIf(Token::comma));
    }

    // Handle delimiters.   If we reach here, the optional delimiters were
    // present, so we need to parse their closing one.
    switch (delimiter) {
    case Delimiter::None:
      break;
    case Delimiter::OptionalParen:
    case Delimiter::Paren:
      if (parser.parseToken(Token::r_paren, "expected ')' in operand list"))
        return failure();
      break;
    case Delimiter::OptionalSquare:
    case Delimiter::Square:
      if (parser.parseToken(Token::r_square, "expected ']' in operand list"))
        return failure();
      break;
    }

    if (requiredOperandCount != -1 &&
        result.size() != static_cast<size_t>(requiredOperandCount))
      return emitError(startLoc, "expected ")
             << requiredOperandCount << " operands";
    return success();
  }

  /// Parse zero or more trailing SSA comma-separated trailing operand
  /// references with a specified surrounding delimiter, and an optional
  /// required operand count. A leading comma is expected before the operands.
  ParseResult parseTrailingOperandList(SmallVectorImpl<OperandType> &result,
                                       int requiredOperandCount,
                                       Delimiter delimiter) override {
    if (parser.getToken().is(Token::comma)) {
      parseComma();
      return parseOperandList(result, requiredOperandCount, delimiter);
    }
    if (requiredOperandCount != -1)
      return emitError(parser.getToken().getLoc(), "expected ")
             << requiredOperandCount << " operands";
    return success();
  }

  /// Resolve an operand to an SSA value, emitting an error on failure.
  ParseResult resolveOperand(const OperandType &operand, Type type,
                             SmallVectorImpl<Value> &result) override {
    OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number,
                                               operand.location};
    if (auto value = parser.resolveSSAUse(operandInfo, type)) {
      result.push_back(value);
      return success();
    }
    return failure();
  }

  /// Parse an AffineMap of SSA ids.
  ParseResult
  parseAffineMapOfSSAIds(SmallVectorImpl<OperandType> &operands,
                         Attribute &mapAttr, StringRef attrName,
                         SmallVectorImpl<NamedAttribute> &attrs) override {
    SmallVector<OperandType, 2> dimOperands;
    SmallVector<OperandType, 1> symOperands;

    auto parseElement = [&](bool isSymbol) -> ParseResult {
      OperandType operand;
      if (parseOperand(operand))
        return failure();
      if (isSymbol)
        symOperands.push_back(operand);
      else
        dimOperands.push_back(operand);
      return success();
    };

    AffineMap map;
    if (parser.parseAffineMapOfSSAIds(map, parseElement))
      return failure();
    // Add AffineMap attribute.
    if (map) {
      mapAttr = AffineMapAttr::get(map);
      attrs.push_back(parser.builder.getNamedAttr(attrName, mapAttr));
    }

    // Add dim operands before symbol operands in 'operands'.
    operands.assign(dimOperands.begin(), dimOperands.end());
    operands.append(symOperands.begin(), symOperands.end());
    return success();
  }

  //===--------------------------------------------------------------------===//
  // Region Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a region that takes `arguments` of `argTypes` types.  This
  /// effectively defines the SSA values of `arguments` and assigns their type.
  ParseResult parseRegion(Region &region, ArrayRef<OperandType> arguments,
                          ArrayRef<Type> argTypes,
                          bool enableNameShadowing) override {
    assert(arguments.size() == argTypes.size() &&
           "mismatching number of arguments and types");

    SmallVector<std::pair<OperationParser::SSAUseInfo, Type>, 2>
        regionArguments;
    for (auto pair : llvm::zip(arguments, argTypes)) {
      const OperandType &operand = std::get<0>(pair);
      Type type = std::get<1>(pair);
      OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number,
                                                 operand.location};
      regionArguments.emplace_back(operandInfo, type);
    }

    // Try to parse the region.
    assert((!enableNameShadowing ||
            opDefinition->hasProperty(OperationProperty::IsolatedFromAbove)) &&
           "name shadowing is only allowed on isolated regions");
    if (parser.parseRegion(region, regionArguments, enableNameShadowing))
      return failure();
    return success();
  }

  /// Parses a region if present.
  ParseResult parseOptionalRegion(Region &region,
                                  ArrayRef<OperandType> arguments,
                                  ArrayRef<Type> argTypes,
                                  bool enableNameShadowing) override {
    if (parser.getToken().isNot(Token::l_brace))
      return success();
    return parseRegion(region, arguments, argTypes, enableNameShadowing);
  }

  /// Parse a region argument. The type of the argument will be resolved later
  /// by a call to `parseRegion`.
  ParseResult parseRegionArgument(OperandType &argument) override {
    return parseOperand(argument);
  }

  /// Parse a region argument if present.
  ParseResult parseOptionalRegionArgument(OperandType &argument) override {
    if (parser.getToken().isNot(Token::percent_identifier))
      return success();
    return parseRegionArgument(argument);
  }

  ParseResult
  parseRegionArgumentList(SmallVectorImpl<OperandType> &result,
                          int requiredOperandCount = -1,
                          Delimiter delimiter = Delimiter::None) override {
    return parseOperandOrRegionArgList(result, /*isOperandList=*/false,
                                       requiredOperandCount, delimiter);
  }

  //===--------------------------------------------------------------------===//
  // Successor Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a single operation successor and its operand list.
  ParseResult
  parseSuccessorAndUseList(Block *&dest,
                           SmallVectorImpl<Value> &operands) override {
    return parser.parseSuccessorAndUseList(dest, operands);
  }

  //===--------------------------------------------------------------------===//
  // Type Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a type.
  ParseResult parseType(Type &result) override {
    return failure(!(result = parser.parseType()));
  }

  /// Parse an optional arrow followed by a type list.
  ParseResult
  parseOptionalArrowTypeList(SmallVectorImpl<Type> &result) override {
    if (!parser.consumeIf(Token::arrow))
      return success();
    return parser.parseFunctionResultTypes(result);
  }

  /// Parse a colon followed by a type.
  ParseResult parseColonType(Type &result) override {
    return failure(parser.parseToken(Token::colon, "expected ':'") ||
                   !(result = parser.parseType()));
  }

  /// Parse a colon followed by a type list, which must have at least one type.
  ParseResult parseColonTypeList(SmallVectorImpl<Type> &result) override {
    if (parser.parseToken(Token::colon, "expected ':'"))
      return failure();
    return parser.parseTypeListNoParens(result);
  }

  /// Parse an optional colon followed by a type list, which if present must
  /// have at least one type.
  ParseResult
  parseOptionalColonTypeList(SmallVectorImpl<Type> &result) override {
    if (!parser.consumeIf(Token::colon))
      return success();
    return parser.parseTypeListNoParens(result);
  }

private:
  /// The source location of the operation name.
  SMLoc nameLoc;

  /// The abstract information of the operation.
  const AbstractOperation *opDefinition;

  /// The main operation parser.
  OperationParser &parser;

  /// A flag that indicates if any errors were emitted during parsing.
  bool emittedError = false;
};
} // end anonymous namespace.

Operation *OperationParser::parseCustomOperation() {
  auto opLoc = getToken().getLoc();
  auto opName = getTokenSpelling();

  auto *opDefinition = AbstractOperation::lookup(opName, getContext());
  if (!opDefinition && !opName.contains('.')) {
    // If the operation name has no namespace prefix we treat it as a standard
    // operation and prefix it with "std".
    // TODO: Would it be better to just build a mapping of the registered
    // operations in the standard dialect?
    opDefinition =
        AbstractOperation::lookup(Twine("std." + opName).str(), getContext());
  }

  if (!opDefinition) {
    emitError(opLoc) << "custom op '" << opName << "' is unknown";
    return nullptr;
  }

  consumeToken();

  // If the custom op parser crashes, produce some indication to help
  // debugging.
  std::string opNameStr = opName.str();
  llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'",
                                   opNameStr.c_str());

  // Get location information for the operation.
  auto srcLocation = getEncodedSourceLocation(opLoc);

  // Have the op implementation take a crack and parsing this.
  OperationState opState(srcLocation, opDefinition->name);
  CleanupOpStateRegions guard{opState};
  CustomOpAsmParser opAsmParser(opLoc, opDefinition, *this);
  if (opAsmParser.parseOperation(opState))
    return nullptr;

  // If it emitted an error, we failed.
  if (opAsmParser.didEmitError())
    return nullptr;

  // Parse a location if one is present.
  if (parseOptionalTrailingLocation(opState.location))
    return nullptr;

  // Otherwise, we succeeded.  Use the state it parsed as our op information.
  return opBuilder.createOperation(opState);
}

//===----------------------------------------------------------------------===//
// Region Parsing
//===----------------------------------------------------------------------===//

/// Region.
///
///   region ::= '{' region-body
///
ParseResult OperationParser::parseRegion(
    Region &region,
    ArrayRef<std::pair<OperationParser::SSAUseInfo, Type>> entryArguments,
    bool isIsolatedNameScope) {
  // Parse the '{'.
  if (parseToken(Token::l_brace, "expected '{' to begin a region"))
    return failure();

  // Check for an empty region.
  if (entryArguments.empty() && consumeIf(Token::r_brace))
    return success();
  auto currentPt = opBuilder.saveInsertionPoint();

  // Push a new named value scope.
  pushSSANameScope(isIsolatedNameScope);

  // Parse the first block directly to allow for it to be unnamed.
  Block *block = new Block();

  // Add arguments to the entry block.
  if (!entryArguments.empty()) {
    for (auto &placeholderArgPair : entryArguments) {
      auto &argInfo = placeholderArgPair.first;
      // Ensure that the argument was not already defined.
      if (auto defLoc = getReferenceLoc(argInfo.name, argInfo.number)) {
        return emitError(argInfo.loc, "region entry argument '" + argInfo.name +
                                          "' is already in use")
                   .attachNote(getEncodedSourceLocation(*defLoc))
               << "previously referenced here";
      }
      if (addDefinition(placeholderArgPair.first,
                        block->addArgument(placeholderArgPair.second))) {
        delete block;
        return failure();
      }
    }

    // If we had named arguments, then don't allow a block name.
    if (getToken().is(Token::caret_identifier))
      return emitError("invalid block name in region with named arguments");
  }

  if (parseBlock(block)) {
    delete block;
    return failure();
  }

  // Verify that no other arguments were parsed.
  if (!entryArguments.empty() &&
      block->getNumArguments() > entryArguments.size()) {
    delete block;
    return emitError("entry block arguments were already defined");
  }

  // Parse the rest of the region.
  region.push_back(block);
  if (parseRegionBody(region))
    return failure();

  // Pop the SSA value scope for this region.
  if (popSSANameScope())
    return failure();

  // Reset the original insertion point.
  opBuilder.restoreInsertionPoint(currentPt);
  return success();
}

/// Region.
///
///   region-body ::= block* '}'
///
ParseResult OperationParser::parseRegionBody(Region &region) {
  // Parse the list of blocks.
  while (!consumeIf(Token::r_brace)) {
    Block *newBlock = nullptr;
    if (parseBlock(newBlock))
      return failure();
    region.push_back(newBlock);
  }
  return success();
}

//===----------------------------------------------------------------------===//
// Block Parsing
//===----------------------------------------------------------------------===//

/// Block declaration.
///
///   block ::= block-label? operation*
///   block-label    ::= block-id block-arg-list? `:`
///   block-id       ::= caret-id
///   block-arg-list ::= `(` ssa-id-and-type-list? `)`
///
ParseResult OperationParser::parseBlock(Block *&block) {
  // The first block of a region may already exist, if it does the caret
  // identifier is optional.
  if (block && getToken().isNot(Token::caret_identifier))
    return parseBlockBody(block);

  SMLoc nameLoc = getToken().getLoc();
  auto name = getTokenSpelling();
  if (parseToken(Token::caret_identifier, "expected block name"))
    return failure();

  block = defineBlockNamed(name, nameLoc, block);

  // Fail if the block was already defined.
  if (!block)
    return emitError(nameLoc, "redefinition of block '") << name << "'";

  // If an argument list is present, parse it.
  if (consumeIf(Token::l_paren)) {
    SmallVector<BlockArgument, 8> bbArgs;
    if (parseOptionalBlockArgList(bbArgs, block) ||
        parseToken(Token::r_paren, "expected ')' to end argument list"))
      return failure();
  }

  if (parseToken(Token::colon, "expected ':' after block name"))
    return failure();

  return parseBlockBody(block);
}

ParseResult OperationParser::parseBlockBody(Block *block) {
  // Set the insertion point to the end of the block to parse.
  opBuilder.setInsertionPointToEnd(block);

  // Parse the list of operations that make up the body of the block.
  while (getToken().isNot(Token::caret_identifier, Token::r_brace))
    if (parseOperation())
      return failure();

  return success();
}

/// Get the block with the specified name, creating it if it doesn't already
/// exist.  The location specified is the point of use, which allows
/// us to diagnose references to blocks that are not defined precisely.
Block *OperationParser::getBlockNamed(StringRef name, SMLoc loc) {
  auto &blockAndLoc = getBlockInfoByName(name);
  if (!blockAndLoc.first) {
    blockAndLoc = {new Block(), loc};
    insertForwardRef(blockAndLoc.first, loc);
  }

  return blockAndLoc.first;
}

/// Define the block with the specified name. Returns the Block* or nullptr in
/// the case of redefinition.
Block *OperationParser::defineBlockNamed(StringRef name, SMLoc loc,
                                         Block *existing) {
  auto &blockAndLoc = getBlockInfoByName(name);
  if (!blockAndLoc.first) {
    // If the caller provided a block, use it.  Otherwise create a new one.
    if (!existing)
      existing = new Block();
    blockAndLoc.first = existing;
    blockAndLoc.second = loc;
    return blockAndLoc.first;
  }

  // Forward declarations are removed once defined, so if we are defining a
  // existing block and it is not a forward declaration, then it is a
  // redeclaration.
  if (!eraseForwardRef(blockAndLoc.first))
    return nullptr;
  return blockAndLoc.first;
}

/// Parse a (possibly empty) list of SSA operands with types as block arguments.
///
///   ssa-id-and-type-list ::= ssa-id-and-type (`,` ssa-id-and-type)*
///
ParseResult OperationParser::parseOptionalBlockArgList(
    SmallVectorImpl<BlockArgument> &results, Block *owner) {
  if (getToken().is(Token::r_brace))
    return success();

  // If the block already has arguments, then we're handling the entry block.
  // Parse and register the names for the arguments, but do not add them.
  bool definingExistingArgs = owner->getNumArguments() != 0;
  unsigned nextArgument = 0;

  return parseCommaSeparatedList([&]() -> ParseResult {
    return parseSSADefOrUseAndType(
        [&](SSAUseInfo useInfo, Type type) -> ParseResult {
          // If this block did not have existing arguments, define a new one.
          if (!definingExistingArgs)
            return addDefinition(useInfo, owner->addArgument(type));

          // Otherwise, ensure that this argument has already been created.
          if (nextArgument >= owner->getNumArguments())
            return emitError("too many arguments specified in argument list");

          // Finally, make sure the existing argument has the correct type.
          auto arg = owner->getArgument(nextArgument++);
          if (arg.getType() != type)
            return emitError("argument and block argument type mismatch");
          return addDefinition(useInfo, arg);
        });
  });
}

//===----------------------------------------------------------------------===//
// Top-level entity parsing.
//===----------------------------------------------------------------------===//

namespace {
/// This parser handles entities that are only valid at the top level of the
/// file.
class ModuleParser : public Parser {
public:
  explicit ModuleParser(ParserState &state) : Parser(state) {}

  ParseResult parseModule(ModuleOp module);

private:
  /// Parse an attribute alias declaration.
  ParseResult parseAttributeAliasDef();

  /// Parse an attribute alias declaration.
  ParseResult parseTypeAliasDef();
};
} // end anonymous namespace

/// Parses an attribute alias declaration.
///
///   attribute-alias-def ::= '#' alias-name `=` attribute-value
///
ParseResult ModuleParser::parseAttributeAliasDef() {
  assert(getToken().is(Token::hash_identifier));
  StringRef aliasName = getTokenSpelling().drop_front();

  // Check for redefinitions.
  if (getState().symbols.attributeAliasDefinitions.count(aliasName) > 0)
    return emitError("redefinition of attribute alias id '" + aliasName + "'");

  // Make sure this isn't invading the dialect attribute namespace.
  if (aliasName.contains('.'))
    return emitError("attribute names with a '.' are reserved for "
                     "dialect-defined names");

  consumeToken(Token::hash_identifier);

  // Parse the '='.
  if (parseToken(Token::equal, "expected '=' in attribute alias definition"))
    return failure();

  // Parse the attribute value.
  Attribute attr = parseAttribute();
  if (!attr)
    return failure();

  getState().symbols.attributeAliasDefinitions[aliasName] = attr;
  return success();
}

/// Parse a type alias declaration.
///
///   type-alias-def ::= '!' alias-name `=` 'type' type
///
ParseResult ModuleParser::parseTypeAliasDef() {
  assert(getToken().is(Token::exclamation_identifier));
  StringRef aliasName = getTokenSpelling().drop_front();

  // Check for redefinitions.
  if (getState().symbols.typeAliasDefinitions.count(aliasName) > 0)
    return emitError("redefinition of type alias id '" + aliasName + "'");

  // Make sure this isn't invading the dialect type namespace.
  if (aliasName.contains('.'))
    return emitError("type names with a '.' are reserved for "
                     "dialect-defined names");

  consumeToken(Token::exclamation_identifier);

  // Parse the '=' and 'type'.
  if (parseToken(Token::equal, "expected '=' in type alias definition") ||
      parseToken(Token::kw_type, "expected 'type' in type alias definition"))
    return failure();

  // Parse the type.
  Type aliasedType = parseType();
  if (!aliasedType)
    return failure();

  // Register this alias with the parser state.
  getState().symbols.typeAliasDefinitions.try_emplace(aliasName, aliasedType);
  return success();
}

/// This is the top-level module parser.
ParseResult ModuleParser::parseModule(ModuleOp module) {
  OperationParser opParser(getState(), module);

  // Module itself is a name scope.
  opParser.pushSSANameScope(/*isIsolated=*/true);

  while (true) {
    switch (getToken().getKind()) {
    default:
      // Parse a top-level operation.
      if (opParser.parseOperation())
        return failure();
      break;

    // If we got to the end of the file, then we're done.
    case Token::eof: {
      if (opParser.finalize())
        return failure();

      // Handle the case where the top level module was explicitly defined.
      auto &bodyBlocks = module.getBodyRegion().getBlocks();
      auto &operations = bodyBlocks.front().getOperations();
      assert(!operations.empty() && "expected a valid module terminator");

      // Check that the first operation is a module, and it is the only
      // non-terminator operation.
      ModuleOp nested = dyn_cast<ModuleOp>(operations.front());
      if (nested && std::next(operations.begin(), 2) == operations.end()) {
        // Merge the data of the nested module operation into 'module'.
        module.setLoc(nested.getLoc());
        module.setAttrs(nested.getOperation()->getAttrList());
        bodyBlocks.splice(bodyBlocks.end(), nested.getBodyRegion().getBlocks());

        // Erase the original module body.
        bodyBlocks.pop_front();
      }

      return opParser.popSSANameScope();
    }

    // If we got an error token, then the lexer already emitted an error, just
    // stop.  Someday we could introduce error recovery if there was demand
    // for it.
    case Token::error:
      return failure();

    // Parse an attribute alias.
    case Token::hash_identifier:
      if (parseAttributeAliasDef())
        return failure();
      break;

    // Parse a type alias.
    case Token::exclamation_identifier:
      if (parseTypeAliasDef())
        return failure();
      break;
    }
  }
}

//===----------------------------------------------------------------------===//

/// This parses the file specified by the indicated SourceMgr and returns an
/// MLIR module if it was valid.  If not, it emits diagnostics and returns
/// null.
OwningModuleRef mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr,
                                      MLIRContext *context) {
  auto sourceBuf = sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID());

  // This is the result module we are parsing into.
  OwningModuleRef module(ModuleOp::create(FileLineColLoc::get(
      sourceBuf->getBufferIdentifier(), /*line=*/0, /*column=*/0, context)));

  SymbolState aliasState;
  ParserState state(sourceMgr, context, aliasState);
  if (ModuleParser(state).parseModule(*module))
    return nullptr;

  // Make sure the parse module has no other structural problems detected by
  // the verifier.
  if (failed(verify(*module)))
    return nullptr;

  return module;
}

/// This parses the file specified by the indicated filename and returns an
/// MLIR module if it was valid.  If not, the error message is emitted through
/// the error handler registered in the context, and a null pointer is returned.
OwningModuleRef mlir::parseSourceFile(StringRef filename,
                                      MLIRContext *context) {
  llvm::SourceMgr sourceMgr;
  return parseSourceFile(filename, sourceMgr, context);
}

/// This parses the file specified by the indicated filename using the provided
/// SourceMgr and returns an MLIR module if it was valid.  If not, the error
/// message is emitted through the error handler registered in the context, and
/// a null pointer is returned.
OwningModuleRef mlir::parseSourceFile(StringRef filename,
                                      llvm::SourceMgr &sourceMgr,
                                      MLIRContext *context) {
  if (sourceMgr.getNumBuffers() != 0) {
    // TODO(b/136086478): Extend to support multiple buffers.
    emitError(mlir::UnknownLoc::get(context),
              "only main buffer parsed at the moment");
    return nullptr;
  }
  auto file_or_err = llvm::MemoryBuffer::getFileOrSTDIN(filename);
  if (std::error_code error = file_or_err.getError()) {
    emitError(mlir::UnknownLoc::get(context),
              "could not open input file " + filename);
    return nullptr;
  }

  // Load the MLIR module.
  sourceMgr.AddNewSourceBuffer(std::move(*file_or_err), llvm::SMLoc());
  return parseSourceFile(sourceMgr, context);
}

/// This parses the program string to a MLIR module if it was valid. If not,
/// it emits diagnostics and returns null.
OwningModuleRef mlir::parseSourceString(StringRef moduleStr,
                                        MLIRContext *context) {
  auto memBuffer = MemoryBuffer::getMemBuffer(moduleStr);
  if (!memBuffer)
    return nullptr;

  SourceMgr sourceMgr;
  sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc());
  return parseSourceFile(sourceMgr, context);
}

/// Parses a symbol, of type 'T', and returns it if parsing was successful. If
/// parsing failed, nullptr is returned. The number of bytes read from the input
/// string is returned in 'numRead'.
template <typename T, typename ParserFn>
static T parseSymbol(StringRef inputStr, MLIRContext *context, size_t &numRead,
                     ParserFn &&parserFn) {
  SymbolState aliasState;
  return parseSymbol<T>(
      inputStr, context, aliasState,
      [&](Parser &parser) {
        SourceMgrDiagnosticHandler handler(
            const_cast<llvm::SourceMgr &>(parser.getSourceMgr()),
            parser.getContext());
        return parserFn(parser);
      },
      &numRead);
}

Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context) {
  size_t numRead = 0;
  return parseAttribute(attrStr, context, numRead);
}
Attribute mlir::parseAttribute(StringRef attrStr, Type type) {
  size_t numRead = 0;
  return parseAttribute(attrStr, type, numRead);
}

Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context,
                               size_t &numRead) {
  return parseSymbol<Attribute>(attrStr, context, numRead, [](Parser &parser) {
    return parser.parseAttribute();
  });
}
Attribute mlir::parseAttribute(StringRef attrStr, Type type, size_t &numRead) {
  return parseSymbol<Attribute>(
      attrStr, type.getContext(), numRead,
      [type](Parser &parser) { return parser.parseAttribute(type); });
}

Type mlir::parseType(StringRef typeStr, MLIRContext *context) {
  size_t numRead = 0;
  return parseType(typeStr, context, numRead);
}

Type mlir::parseType(StringRef typeStr, MLIRContext *context, size_t &numRead) {
  return parseSymbol<Type>(typeStr, context, numRead,
                           [](Parser &parser) { return parser.parseType(); });
}