//===- Block.cpp - MLIR Block Class ---------------------------------------===// // // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/IR/Block.h" #include "mlir/IR/Builders.h" #include "mlir/IR/Operation.h" using namespace mlir; //===----------------------------------------------------------------------===// // BlockArgument //===----------------------------------------------------------------------===// /// Returns the number of this argument. unsigned BlockArgument::getArgNumber() const { // Arguments are not stored in place, so we have to find it within the list. auto argList = getOwner()->getArguments(); return std::distance(argList.begin(), llvm::find(argList, *this)); } //===----------------------------------------------------------------------===// // Block //===----------------------------------------------------------------------===// Block::~Block() { assert(!verifyOpOrder() && "Expected valid operation ordering."); clear(); for (BlockArgument arg : arguments) arg.destroy(); } Region *Block::getParent() const { return parentValidOpOrderPair.getPointer(); } /// Returns the closest surrounding operation that contains this block or /// nullptr if this block is unlinked. Operation *Block::getParentOp() { return getParent() ? getParent()->getParentOp() : nullptr; } /// Return if this block is the entry block in the parent region. bool Block::isEntryBlock() { return this == &getParent()->front(); } /// Insert this block (which must not already be in a region) right before the /// specified block. void Block::insertBefore(Block *block) { assert(!getParent() && "already inserted into a block!"); assert(block->getParent() && "cannot insert before a block without a parent"); block->getParent()->getBlocks().insert(block->getIterator(), this); } /// Unlink this block from its current region and insert it right before the /// specific block. void Block::moveBefore(Block *block) { assert(block->getParent() && "cannot insert before a block without a parent"); block->getParent()->getBlocks().splice( block->getIterator(), getParent()->getBlocks(), getIterator()); } /// Unlink this Block from its parent Region and delete it. void Block::erase() { assert(getParent() && "Block has no parent"); getParent()->getBlocks().erase(this); } /// Returns 'op' if 'op' lies in this block, or otherwise finds the /// ancestor operation of 'op' that lies in this block. Returns nullptr if /// the latter fails. Operation *Block::findAncestorOpInBlock(Operation &op) { // Traverse up the operation hierarchy starting from the owner of operand to // find the ancestor operation that resides in the block of 'forOp'. auto *currOp = &op; while (currOp->getBlock() != this) { currOp = currOp->getParentOp(); if (!currOp) return nullptr; } return currOp; } /// This drops all operand uses from operations within this block, which is /// an essential step in breaking cyclic dependences between references when /// they are to be deleted. void Block::dropAllReferences() { for (Operation &i : *this) i.dropAllReferences(); } void Block::dropAllDefinedValueUses() { for (auto arg : getArguments()) arg.dropAllUses(); for (auto &op : *this) op.dropAllDefinedValueUses(); dropAllUses(); } /// Returns true if the ordering of the child operations is valid, false /// otherwise. bool Block::isOpOrderValid() { return parentValidOpOrderPair.getInt(); } /// Invalidates the current ordering of operations. void Block::invalidateOpOrder() { // Validate the current ordering. assert(!verifyOpOrder()); parentValidOpOrderPair.setInt(false); } /// Verifies the current ordering of child operations. Returns false if the /// order is valid, true otherwise. bool Block::verifyOpOrder() { // The order is already known to be invalid. if (!isOpOrderValid()) return false; // The order is valid if there are less than 2 operations. if (operations.empty() || std::next(operations.begin()) == operations.end()) return false; Operation *prev = nullptr; for (auto &i : *this) { // The previous operation must have a smaller order index than the next as // it appears earlier in the list. if (prev && prev->orderIndex != Operation::kInvalidOrderIdx && prev->orderIndex >= i.orderIndex) return true; prev = &i; } return false; } /// Recomputes the ordering of child operations within the block. void Block::recomputeOpOrder() { parentValidOpOrderPair.setInt(true); unsigned orderIndex = 0; for (auto &op : *this) op.orderIndex = (orderIndex += Operation::kOrderStride); } //===----------------------------------------------------------------------===// // Argument list management. //===----------------------------------------------------------------------===// BlockArgument Block::addArgument(Type type) { BlockArgument arg = BlockArgument::create(type, this); arguments.push_back(arg); return arg; } /// Add one argument to the argument list for each type specified in the list. auto Block::addArguments(ArrayRef<Type> types) -> iterator_range<args_iterator> { arguments.reserve(arguments.size() + types.size()); auto initialSize = arguments.size(); for (auto type : types) { addArgument(type); } return {arguments.data() + initialSize, arguments.data() + arguments.size()}; } void Block::eraseArgument(unsigned index, bool updatePredTerms) { assert(index < arguments.size()); // Delete the argument. arguments[index].destroy(); arguments.erase(arguments.begin() + index); // If we aren't updating predecessors, there is nothing left to do. if (!updatePredTerms) return; // Erase this argument from each of the predecessor's terminator. for (auto predIt = pred_begin(), predE = pred_end(); predIt != predE; ++predIt) { auto *predTerminator = (*predIt)->getTerminator(); predTerminator->eraseSuccessorOperand(predIt.getSuccessorIndex(), index); } } /// Insert one value to the given position of the argument list. The existing /// arguments are shifted. The block is expected not to have predecessors. BlockArgument Block::insertArgument(args_iterator it, Type type) { assert(llvm::empty(getPredecessors()) && "cannot insert arguments to blocks with predecessors"); // Use the args_iterator (on the BlockArgListType) to compute the insertion // iterator in the underlying argument storage. size_t distance = std::distance(args_begin(), it); auto arg = BlockArgument::create(type, this); arguments.insert(std::next(arguments.begin(), distance), arg); return arg; } //===----------------------------------------------------------------------===// // Terminator management //===----------------------------------------------------------------------===// /// Get the terminator operation of this block. This function asserts that /// the block has a valid terminator operation. Operation *Block::getTerminator() { assert(!empty() && !back().isKnownNonTerminator()); return &back(); } /// Return true if this block has no predecessors. bool Block::hasNoPredecessors() { return pred_begin() == pred_end(); } // Indexed successor access. unsigned Block::getNumSuccessors() { return empty() ? 0 : back().getNumSuccessors(); } Block *Block::getSuccessor(unsigned i) { assert(i < getNumSuccessors()); return getTerminator()->getSuccessor(i); } /// If this block has exactly one predecessor, return it. Otherwise, return /// null. /// /// Note that multiple edges from a single block (e.g. if you have a cond /// branch with the same block as the true/false destinations) is not /// considered to be a single predecessor. Block *Block::getSinglePredecessor() { auto it = pred_begin(); if (it == pred_end()) return nullptr; auto *firstPred = *it; ++it; return it == pred_end() ? firstPred : nullptr; } //===----------------------------------------------------------------------===// // Other //===----------------------------------------------------------------------===// /// Split the block into two blocks before the specified operation or /// iterator. /// /// Note that all operations BEFORE the specified iterator stay as part of /// the original basic block, and the rest of the operations in the original /// block are moved to the new block, including the old terminator. The /// original block is left without a terminator. /// /// The newly formed Block is returned, and the specified iterator is /// invalidated. Block *Block::splitBlock(iterator splitBefore) { // Start by creating a new basic block, and insert it immediate after this // one in the containing region. auto newBB = new Block(); getParent()->getBlocks().insert(std::next(Region::iterator(this)), newBB); // Move all of the operations from the split point to the end of the region // into the new block. newBB->getOperations().splice(newBB->end(), getOperations(), splitBefore, end()); return newBB; } //===----------------------------------------------------------------------===// // Predecessors //===----------------------------------------------------------------------===// Block *PredecessorIterator::unwrap(BlockOperand &value) { return value.getOwner()->getBlock(); } /// Get the successor number in the predecessor terminator. unsigned PredecessorIterator::getSuccessorIndex() const { return I->getOperandNumber(); } //===----------------------------------------------------------------------===// // Successors //===----------------------------------------------------------------------===// SuccessorRange::SuccessorRange(Block *block) : SuccessorRange(nullptr, 0) { if (Operation *term = block->getTerminator()) if ((count = term->getNumSuccessors())) base = term->getBlockOperands().data(); } SuccessorRange::SuccessorRange(Operation *term) : SuccessorRange(nullptr, 0) { if ((count = term->getNumSuccessors())) base = term->getBlockOperands().data(); }