; RUN: opt %loadPolly -polly-scops -polly-allow-nonaffine-branches \ ; RUN: -polly-invariant-load-hoisting=true \ ; RUN: -polly-allow-nonaffine-loops=true \ ; RUN: -analyze < %s | FileCheck %s --check-prefix=INNERMOST ; RUN: opt %loadPolly -polly-scops -polly-allow-nonaffine \ ; RUN: -polly-invariant-load-hoisting=true \ ; RUN: -polly-allow-nonaffine-branches -polly-allow-nonaffine-loops=true \ ; RUN: -analyze < %s | FileCheck %s \ ; RUN: --check-prefix=ALL ; ; Negative test for INNERMOST. ; At the moment we will optimistically assume A[i] in the conditional before the inner ; loop might be invariant and expand the SCoP from the loop to include the conditional. However, ; during SCoP generation we will realize that A[i] is in not always invariant. ; ; Possible solutions could be: ; - Do not optimistically assume it to be invariant (as before this commit), however we would loose ; a lot of invariant cases due to possible aliasing. ; - Reduce the size of the SCoP if an assumed invariant access is in fact not invariant instead of ; rejecting the whole region. ; ; INNERMOST: Function: f ; INNERMOST-NEXT: Region: %bb4---%bb3 ; INNERMOST-NEXT: Max Loop Depth: 1 ; INNERMOST-NEXT: Invariant Accesses: { ; INNERMOST-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 0] ; INNERMOST-NEXT: [tmp6, N, p_2] -> { Stmt_bb4[] -> MemRef_A[p_2] }; ; INNERMOST-NEXT: Execution Context: [tmp6, N, p_2] -> { : (tmp6 > 0 and p_2 >= N) or (tmp6 < 0 and p_2 >= N) or tmp6 = 0 } ; INNERMOST-NEXT: } ; INNERMOST-NEXT: Context: ; INNERMOST-NEXT: [tmp6, N, p_2] -> { : -2147483648 <= tmp6 <= 2147483647 and -2147483648 <= N <= 2147483647 and 0 <= p_2 <= 1024 } ; INNERMOST-NEXT: Assumed Context: ; INNERMOST-NEXT: [tmp6, N, p_2] -> { : } ; INNERMOST-NEXT: Invalid Context: ; INNERMOST-NEXT: [tmp6, N, p_2] -> { : p_2 < N and (tmp6 < 0 or tmp6 > 0) } ; INNERMOST-NEXT: p0: %tmp6 ; INNERMOST-NEXT: p1: %N ; INNERMOST-NEXT: p2: {0,+,1}<nuw><nsw><%bb3> ; INNERMOST-NEXT: Arrays { ; INNERMOST-NEXT: i32 MemRef_A[*]; // Element size 4 ; INNERMOST-NEXT: i64 MemRef_indvars_iv_next2; // Element size 8 ; INNERMOST-NEXT: } ; INNERMOST-NEXT: Arrays (Bounds as pw_affs) { ; INNERMOST-NEXT: i32 MemRef_A[*]; // Element size 4 ; INNERMOST-NEXT: i64 MemRef_indvars_iv_next2; // Element size 8 ; INNERMOST-NEXT: } ; INNERMOST-NEXT: Alias Groups (0): ; INNERMOST-NEXT: n/a ; INNERMOST-NEXT: Statements { ; INNERMOST-NEXT: Stmt_bb11 ; INNERMOST-NEXT: Domain := ; INNERMOST-NEXT: [tmp6, N, p_2] -> { Stmt_bb11[i0] : 0 <= i0 < N and (tmp6 < 0 or tmp6 > 0) }; ; INNERMOST-NEXT: Schedule := ; INNERMOST-NEXT: [tmp6, N, p_2] -> { Stmt_bb11[i0] -> [0, i0] : tmp6 < 0 or tmp6 > 0 }; ; INNERMOST-NEXT: ReadAccess := [Reduction Type: +] [Scalar: 0] ; INNERMOST-NEXT: [tmp6, N, p_2] -> { Stmt_bb11[i0] -> MemRef_A[i0] }; ; INNERMOST-NEXT: MustWriteAccess := [Reduction Type: +] [Scalar: 0] ; INNERMOST-NEXT: [tmp6, N, p_2] -> { Stmt_bb11[i0] -> MemRef_A[i0] }; ; INNERMOST-NEXT: Stmt_bb18 ; INNERMOST-NEXT: Domain := ; INNERMOST-NEXT: [tmp6, N, p_2] -> { Stmt_bb18[] }; ; INNERMOST-NEXT: Schedule := ; INNERMOST-NEXT: [tmp6, N, p_2] -> { Stmt_bb18[] -> [1, 0] }; ; INNERMOST-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1] ; INNERMOST-NEXT: [tmp6, N, p_2] -> { Stmt_bb18[] -> MemRef_indvars_iv_next2[] }; ; INNERMOST-NEXT: } ; ; ALL: Function: f ; ALL-NEXT: Region: %bb3---%bb19 ; ALL-NEXT: Max Loop Depth: 1 ; ALL-NEXT: Invariant Accesses: { ; ALL-NEXT: } ; ALL-NEXT: Context: ; ALL-NEXT: { : } ; ALL-NEXT: Assumed Context: ; ALL-NEXT: { : } ; ALL-NEXT: Invalid Context: ; ALL-NEXT: { : false } ; ALL-NEXT: Arrays { ; ALL-NEXT: i32 MemRef_A[*]; // Element size 4 ; ALL-NEXT: } ; ALL-NEXT: Arrays (Bounds as pw_affs) { ; ALL-NEXT: i32 MemRef_A[*]; // Element size 4 ; ALL-NEXT: } ; ALL-NEXT: Alias Groups (0): ; ALL-NEXT: n/a ; ALL-NEXT: Statements { ; ALL-NEXT: Stmt_bb4__TO__bb17 ; ALL-NEXT: Domain := ; ALL-NEXT: { Stmt_bb4__TO__bb17[i0] : 0 <= i0 <= 1023 }; ; ALL-NEXT: Schedule := ; ALL-NEXT: { Stmt_bb4__TO__bb17[i0] -> [i0] }; ; ALL-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 0] ; ALL-NEXT: { Stmt_bb4__TO__bb17[i0] -> MemRef_A[i0] }; ; ALL-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 0] ; ALL-NEXT: { Stmt_bb4__TO__bb17[i0] -> MemRef_A[o0] : 0 <= o0 <= 2147483647 }; ; ALL-NEXT: MayWriteAccess := [Reduction Type: NONE] [Scalar: 0] ; ALL-NEXT: { Stmt_bb4__TO__bb17[i0] -> MemRef_A[o0] : 0 <= o0 <= 2147483647 }; ; ALL-NEXT: } ; ; void f(int *A, int N) { ; for (int i = 0; i < 1024; i++) ; if (A[i]) ; for (int j = 0; j < N; j++) ; A[j]++; ; } ; target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" define void @f(i32* %A, i32 %N) { bb: %tmp = sext i32 %N to i64 br label %bb3 bb3: ; preds = %bb18, %bb %indvars.iv1 = phi i64 [ %indvars.iv.next2, %bb18 ], [ 0, %bb ] %exitcond = icmp ne i64 %indvars.iv1, 1024 br i1 %exitcond, label %bb4, label %bb19 bb4: ; preds = %bb3 %tmp5 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv1 %tmp6 = load i32, i32* %tmp5, align 4 %tmp7 = icmp eq i32 %tmp6, 0 br i1 %tmp7, label %bb17, label %bb8 bb8: ; preds = %bb4 br label %bb9 bb9: ; preds = %bb15, %bb8 %indvars.iv = phi i64 [ %indvars.iv.next, %bb15 ], [ 0, %bb8 ] %tmp10 = icmp slt i64 %indvars.iv, %tmp br i1 %tmp10, label %bb11, label %bb16 bb11: ; preds = %bb9 %tmp12 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv %tmp13 = load i32, i32* %tmp12, align 4 %tmp14 = add nsw i32 %tmp13, 1 store i32 %tmp14, i32* %tmp12, align 4 br label %bb15 bb15: ; preds = %bb11 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 br label %bb9 bb16: ; preds = %bb9 br label %bb17 bb17: ; preds = %bb4, %bb16 br label %bb18 bb18: ; preds = %bb17 %indvars.iv.next2 = add nuw nsw i64 %indvars.iv1, 1 br label %bb3 bb19: ; preds = %bb3 ret void }