Unverified Commit 180c71ea by Johannes vom Dorp Committed by GitHub

Merge pull request #4 from fkie-cad/new_shiny_report

New shiny report
parents 71f48ffa e96b6f8c
FROM phusion/baseimage:0.11
RUN install_clean git python3 python3-pip python3-wheel python3-setuptools texlive-latex-base texlive-latex-extra texlive-fonts-extra texlive-fonts-recommended lmodern
WORKDIR /opt/app
COPY . /opt/app
RUN install_clean git python3 python3-pip python3-wheel python3-setuptools texlive-latex-base texlive-latex-extra lmodern
RUN pip3 install -r requirements.txt
RUN apt-get remove -y python3-pip
......
......@@ -20,29 +20,34 @@
import json
import shutil
from pathlib import Path
from sys import exit as sys_exit
from tempfile import TemporaryDirectory
from pdf_generator.generator import compile_pdf, create_templates
def get_data():
return json.loads(Path('/tmp', 'interface', 'data', 'analysis.json').read_text()), json.loads(Path('/tmp', 'interface', 'data', 'meta.json').read_text())
return json.loads(Path('/tmp', 'interface', 'data', 'analysis.json').read_text()), json.loads(
Path('/tmp', 'interface', 'data', 'meta.json').read_text())
def move_pdf_report(pdf_path):
shutil.move(str(pdf_path.absolute()), str(Path('/tmp', 'interface', 'pdf', pdf_path.name)))
def main():
def main(template_style='default'):
analysis, meta_data = get_data()
with TemporaryDirectory() as tmp_dir:
create_templates(analysis, meta_data, tmp_dir)
create_templates(analysis, meta_data, tmp_dir, template_style)
try:
target_path = compile_pdf(meta_data, tmp_dir)
move_pdf_report(target_path)
except RuntimeError:
pass
return 0
if __name__ == '__main__':
exit(main())
sys_exit(main())
......@@ -2,9 +2,10 @@ import os
import shutil
from pathlib import Path
from common_helper_process import execute_shell_command
from common_helper_process import execute_shell_command_get_return_code
from pdf_generator.tex_generation.template_engine import (
LOGO_FILE, MAIN_TEMPLATE, META_TEMPLATE, PLUGIN_TEMPLATE_BLUEPRINT, TemplateEngine
CUSTOM_TEMPLATE_CLASS, LOGO_FILE, MAIN_TEMPLATE, META_TEMPLATE, TemplateEngine
)
PDF_NAME = Path(MAIN_TEMPLATE).with_suffix('.pdf').name
......@@ -13,7 +14,11 @@ PDF_NAME = Path(MAIN_TEMPLATE).with_suffix('.pdf').name
def execute_latex(tmp_dir):
current_dir = os.getcwd()
os.chdir(tmp_dir)
execute_shell_command('env buf_size=1000000 pdflatex {}'.format(MAIN_TEMPLATE))
output, return_code = execute_shell_command_get_return_code('env buf_size=1000000 pdflatex {}'.format(MAIN_TEMPLATE))
if return_code != 0:
print(f'Warnings / Errors when trying to build PDF:\n{output}')
if not Path('main.pdf').exists():
raise RuntimeError('No pdf output generated. Aborting.')
os.chdir(current_dir)
......@@ -21,12 +26,6 @@ def copy_fact_image(target):
shutil.copy(str(Path(__file__).parent / 'templates' / LOGO_FILE), str(Path(target) / LOGO_FILE))
def render_analysis_templates(engine, analysis):
return [
(PLUGIN_TEMPLATE_BLUEPRINT.format(analysis_plugin), engine.render_analysis_template(analysis_plugin, analysis[analysis_plugin])) for analysis_plugin in analysis
]
def create_report_filename(meta_data):
unsafe_name = '{}_analysis_report.pdf'.format(meta_data['device_name'])
safer_name = unsafe_name.replace(' ', '_').replace('/', '__')
......@@ -41,11 +40,10 @@ def compile_pdf(meta_data, tmp_dir):
return target_path
def create_templates(analysis, meta_data, tmp_dir):
engine = TemplateEngine(tmp_dir=tmp_dir)
Path(tmp_dir, MAIN_TEMPLATE).write_text(engine.render_main_template(analysis=analysis, meta_data=meta_data))
def create_templates(analysis, meta_data, tmp_dir, template_style='default'):
engine = TemplateEngine(template_folder=template_style, tmp_dir=tmp_dir)
Path(tmp_dir, MAIN_TEMPLATE).write_text(engine.render_main_template(analysis=analysis))
Path(tmp_dir, META_TEMPLATE).write_text(engine.render_meta_template(meta_data))
for filename, rendered_template in render_analysis_templates(engine=engine, analysis=analysis):
Path(tmp_dir, filename).write_text(rendered_template)
if template_style == 'default':
Path(tmp_dir, CUSTOM_TEMPLATE_CLASS).write_text(engine.render_template_class())
The MIT License (MIT)
Copyright (c) 2016 Carmine Spagnuolo
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
delim_0 "\\dotfill\ "
delim_1 "\\dotfill\ "
headings_flag 1
heading_prefix "\\nopagebreak\n\\tikz\\node at (0pt,0pt) [draw=none,fill=ocre!50,line width=1pt,inner sep=5pt]{\\parbox{\\linewidth-2\\fboxsep-2\\fboxrule-2pt}{\\centering\\large\\sffamily\\bfseries\\textcolor{white}{" heading_suffix "}}};\\vspace*{0.2cm}\\nopagebreak\n"
\ No newline at end of file
\subsection*{Binwalk (v. \VAR{selected_analysis['plugin_version']})}
{\fontfamily{lmss}\selectfont
\begin{longtable}{|p{3cm}|p{11.5cm}|}
\hline
\multicolumn{2}{|p{14.5cm}|}{Signature Analysis:} \\
\multicolumn{2}{|p{14.5cm}|}{} \\
\multicolumn{2}{|p{14.5cm}|}{\VAR{selected_analysis['signature_analysis'] | filter_chars}} \\
\hline
Entropy Graph & \includegraphics[scale = 0.7]{\VAR{selected_analysis['entropy_analysis_graph'] | base64_to_png('entropy_analysis_graph', tmp_dir)}} \\
\hline
\BLOCK{if selected_analysis['summary']}
\multicolumn{2}{|p{14.5cm}|}{Summary:} \\
\multicolumn{2}{|p{14.5cm}|}{} \\
\BLOCK{for data in selected_analysis['summary']}
\multicolumn{2}{|p{14.5cm}|}{\VAR{data | filter_chars}} \\
\BLOCK{endfor}
\hline
\BLOCK{endif}
\end{longtable}
}
\ No newline at end of file
\subsection*{Exploit Mitigation (v. \VAR{selected_analysis['plugin_version']})}
{\fontfamily{lmss}\selectfont
\begin{longtable}{|p{3cm}|p{11.5cm}|}
\hline
\BLOCK{if selected_analysis['summary']}
NX
&
\BLOCK{for selected_summary in selected_analysis['summary']}
\BLOCK{if selected_summary | contains('NX')}
\VAR{selected_summary | filter_chars} (\VAR{ selected_analysis['summary'][selected_summary] | elements_count })
\BLOCK{endif}
\BLOCK{endfor} \\
\hline
Canary
&
\BLOCK{for selected_summary in selected_analysis['summary']}
\BLOCK{if selected_summary | contains('Canary')}
\VAR{selected_summary | filter_chars} (\VAR{ selected_analysis['summary'][selected_summary] | elements_count })
\BLOCK{endif}
\BLOCK{endfor} \\
\hline
PIE
&
\BLOCK{for selected_summary in selected_analysis['summary']}
\BLOCK{if selected_summary | contains('PIE')}
\VAR{selected_summary | filter_chars} (\VAR{ selected_analysis['summary'][selected_summary] | elements_count })
\BLOCK{endif}
\BLOCK{endfor} \\
\hline
RELRO
&
\BLOCK{for selected_summary in selected_analysis['summary']}
\BLOCK{if selected_summary | contains('RELRO')}
\VAR{selected_summary | filter_chars} (\VAR{ selected_analysis['summary'][selected_summary] | elements_count })
\BLOCK{endif}
\BLOCK{endfor} \\
\hline
\BLOCK{endif}
\end{longtable}
}
\ No newline at end of file
\subsection*{Hashes (v. \VAR{selected_analysis['plugin_version']})}
{\fontfamily{lmss}\selectfont
\begin{tabular}{|p{3cm}|p{11.5cm}|}
\hline
md5 & \VAR{selected_analysis['md5']}\\
\hline
ripemd160 & \VAR{selected_analysis['ripemd160']}\\
\hline
sha1 & \VAR{selected_analysis['sha1']}\\
\hline
sha256 & \VAR{selected_analysis['sha256']}\\
\hline
sha512 & \VAR{selected_analysis['sha512'] | split_hash}\\
\hline
\end{tabular}
}
\ No newline at end of file
\subsection*{File Type (v. \VAR{selected_analysis['plugin_version']})}
{\fontfamily{lmss}\selectfont
\begin{longtable}{|p{3cm}|p{11.5cm}|}
\hline
File Type & \VAR{selected_analysis['full'] | filter_chars} \\
\hline
MIME & \VAR{selected_analysis['mime'] | filter_chars} \\
\hline
\BLOCK{if selected_analysis['summary']}
Containing Files
\BLOCK{for selected_summary in selected_analysis['summary']}
& \VAR{ selected_summary | filter_chars } (\VAR{ selected_analysis['summary'][selected_summary] | elements_count }) \\
\BLOCK{endfor}
\hline
\BLOCK{endif}
\end{longtable}
}
\ No newline at end of file
\subsection*{\VAR{plugin_name | plugin_name | filter_chars} (v. \VAR{selected_analysis['plugin_version'] | filter_chars})}
{\fontfamily{lmss}\selectfont
\begin{longtable}{|p{3cm}|p{11.5cm}|}
\hline
Time of Analysis & \VAR{selected_analysis['analysis_date'] | nice_unix_time} \\
\hline
Plugin Version & \VAR{selected_analysis['plugin_version']} \\
\hline
\BLOCK{if selected_analysis['summary']}
Summary
\BLOCK{for selected_summary in selected_analysis['summary']}
& \VAR{selected_summary | filter_chars} \\
\BLOCK{endfor}
\hline
\BLOCK{endif}
\end{longtable}
}
\ No newline at end of file
\subsection*{IPs and URIs (v. \VAR{selected_analysis['plugin_version']})}
{\fontfamily{lmss}\selectfont
\begin{longtable}{|p{3cm}|p{11.5cm}|}
\hline
IPs v4
\BLOCK{for ip in selected_analysis['ips_v4'] | check_list | filter_list}
& \VAR{ip} \\
\BLOCK{endfor}
\hline
IPs v6
\BLOCK{for ip in selected_analysis['ips_v6'] | check_list | filter_list}
& \VAR{ip} \\
\BLOCK{endfor}
\hline
URIs
\BLOCK{for uri in selected_analysis['uris'] | check_list | filter_list}
& \VAR{uri} \\
\BLOCK{endfor}
\hline
\BLOCK{if selected_analysis['summary']}
\multicolumn{2}{|p{14.5cm}|}{Summary:} \\
\multicolumn{2}{|p{14.5cm}|}{} \\
\BLOCK{for data in selected_analysis['summary']}
\multicolumn{2}{|p{14.5cm}|}{\VAR{data | filter_chars}} \\
\BLOCK{endfor}
\hline
\BLOCK{endif}
\end{longtable}
}
\ No newline at end of file
\documentclass{article}
% % % % % % % %
% Twenty Seconds Resume/CV
% LaTeX Template
% Version 1.1 (8/1/17)
%
% This template has been downloaded from:
% http://www.LaTeXTemplates.com
%
% Original author:
% Carmine Spagnuolo (cspagnuolo@unisa.it) with major modifications by
% Vel (vel@LaTeXTemplates.com)
%
% License:
% The MIT License (see included LICENSE file)
%
% % % % % % % %
\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{graphicx}
\usepackage{lmodern}
\usepackage[a4paper, total={6in, 8in}]{geometry}
\usepackage{longtable}
\usepackage{sectsty}
%----------------------------------------------------------------------------------------
% PACKAGES AND OTHER DOCUMENT CONFIGURATIONS
%----------------------------------------------------------------------------------------
\batchmode
\documentclass[letterpaper, icon]{twentysecondcv}
\allsectionsfont{\sffamily}
%----------------------------------------------------------------------------------------
% SIDE BAR
%----------------------------------------------------------------------------------------
\profilepic{fact.png}
\input{meta.tex}
\begin{document}
%----------------------------------------------------------------------------------------
% CRYPTOGRAPHY
%----------------------------------------------------------------------------------------
\aboutme{
\BLOCK{if 'crypto_material' in analysis}
\BLOCK{if analysis['crypto_material']['summary'] | length}
\BLOCK{for selected_summary in analysis['crypto_material']['summary']}
\VAR{selected_summary | filter_chars} \\
\BLOCK{endfor}
\BLOCK{endif}
\BLOCK{else}
Analysis not present
\BLOCK{endif}
}
%----------------------------------------------------------------------------------------
% EXPLOIT MITIGATION
%----------------------------------------------------------------------------------------
\BLOCK{if 'exploit_mitigations' in analysis}
\BLOCK{if analysis['exploit_mitigations']['summary'] | length}
\begin{titlepage}
\skills{\VAR{ analysis | call_for_mitigations}}
\BLOCK{endif}
\BLOCK{else}
\skills{Analysis not present/1}
\BLOCK{endif}
\newcommand{\HRule}{\rule{\linewidth}{0.5mm}}
\makeprofile
% ----------------------------------------------------------------------------------------------------------------------
% Binwalk & Entropy Graph
% ----------------------------------------------------------------------------------------------------------------------
\BLOCK{if 'binwalk' in analysis}
\BLOCK{if 'entropy_analysis_graph' in analysis['binwalk']}
\BLOCK{if analysis['binwalk']['entropy_analysis_graph'] | length}
\center
\includegraphics[width = \textwidth]{\VAR{analysis['binwalk']['entropy_analysis_graph'] | base64_to_png('entropy_analysis_graph', tmp_dir)}}
\BLOCK{endif}
\BLOCK{endif}
\BLOCK{endif}
% ----------------------------------------------------------------------------------------------------------------------
% Software Components
% ----------------------------------------------------------------------------------------------------------------------
\BLOCK{if 'software_components' in analysis}
\BLOCK{if analysis['software_components']['summary'] | length}
\section{Software}
\includegraphics[width = 13cm]{fact_logo.png}\\[3cm]
\begin{twentyshort}
\BLOCK{for summary in analysis['software_components']['summary'] | sort | x_entires}
\twentyitemshort{\VAR{summary | split_space}}
\BLOCK{endfor}
\BLOCK{if analysis['software_components']['summary'] | elements_count > 10}
\twentyitemshort{}{and \VAR{analysis['software_components']['summary'] | elements_count - 10} others}
\BLOCK{endif}
\end{twentyshort}
\BLOCK{endif}
\BLOCK{endif}\\
% ----------------------------------------------------------------------------------------------------------------------
% Known Vulnerabilities
% ----------------------------------------------------------------------------------------------------------------------
\BLOCK{if 'known_vulnerabilities' in analysis}
\BLOCK{if analysis['known_vulnerabilities']['summary'] | length}
\section{Known Vulnerabilities}
\HRule \\[0.4cm]
{\fontfamily{lmss}\selectfont
{\Large \bfseries Firmware Analysis of \VAR{meta_data['hid'] | filter_chars }}\\[0.4cm]
}
\HRule \\[1.5cm]
\begin{twentyshort}
\BLOCK{for known_vullies in analysis['known_vulnerabilities']['summary']}
\twentyitemshort{\VAR{known_vullies | filter_chars}}{}
\BLOCK{endfor}
\end{twentyshort}
\BLOCK{endif}
\BLOCK{endif}\\
% ----------------------------------------------------------------------------------------------------------------------
% CVE Lookup
% ----------------------------------------------------------------------------------------------------------------------
\BLOCK{if 'cve_lookup' in analysis}
\BLOCK{if analysis['cve_lookup']['summary'] | length}
\section{CVE Lookup}
\vspace{3.0cm}
\begin{twentyshort}
\BLOCK{for cve in analysis['cve_lookup']['summary'] | cve_crits}
\twentyitemshort{\VAR{cve | filter_chars}}{}
\BLOCK{endfor}
\end{twentyshort}
\BLOCK{endif}
\BLOCK{endif}\\
% ----------------------------------------------------------------------------------------------------------------------
% Top 5 File Types
% ----------------------------------------------------------------------------------------------------------------------
\BLOCK{if 'file_type' in analysis}
\BLOCK{if analysis['file_type']['summary'] | length}
\section{Top five occuring file types}
{\fontfamily{lmss}\selectfont
\input{meta.tex}
}
\begin{twentyshort}
\BLOCK{for selected_summary in analysis['file_type']['summary'] | top_five}
\twentyitemshort{\VAR{analysis['file_type']['summary'][selected_summary] | elements_count}}{\VAR{selected_summary | filter_chars}}
\BLOCK{endfor}
\end{twentyshort}
\BLOCK{endif}
\BLOCK{endif}\\
% ----------------------------------------------------------------------------------------------------------------------
% IP & URI
% ----------------------------------------------------------------------------------------------------------------------
\BLOCK{if 'ip_and_uri_finder' in analysis}
\BLOCK{if analysis['ip_and_uri_finder']['summary'] | length}
\section{IPs and URIs}
\begin{twentyshort}
\BLOCK{for selected_analysis in analysis['ip_and_uri_finder']['summary'] | triplet}
\twentyitemshort{\VAR{selected_analysis}}
\BLOCK{endfor}
\end{twentyshort}
\BLOCK{endif}
\BLOCK{endif}
% ----------------------------------------------------------------------------------------------------------------------
% Executables
% ----------------------------------------------------------------------------------------------------------------------
\BLOCK{if 'cpu_architecture' in analysis}
\BLOCK{if analysis['cpu_architecture']['summary'] | length}
\section{Executables}
\begin{twentyshort}
\BLOCK{for selected_summary in analysis['cpu_architecture']['summary']}
\twentyitemshort{\VAR{analysis['cpu_architecture']['summary'][selected_summary] | elements_count}}{\VAR{selected_summary | filter_chars}}
\BLOCK{endfor}
\end{twentyshort}\\
\BLOCK{endif}
\BLOCK{endif}
%----------------------------------------------------------------------------------------
% SECOND PAGE EXAMPLE
%----------------------------------------------------------------------------------------
%\newpage % Start a new page
%\makeprofile % Print the sidebar
% \section{Other information}
% \subsection{Review}
% Alice approaches Wonderland as an anthropologist, but maintains a strong sense of noblesse oblige that comes with her class status. She has confidence in her social position, education, and the Victorian virtue of good manners. Alice has a feeling of entitlement, particularly when comparing herself to Mabel, whom she declares has a ``poky little house," and no toys. Additionally, she flaunts her limited information base with anyone who will listen and becomes increasingly obsessed with the importance of good manners as she deals with the rude creatures of Wonderland. Alice maintains a superior attitude and behaves with solicitous indulgence toward those she believes are less privileged.
% \section{Other information}
% \subsection{Review}
\vfill
\end{titlepage}
% Alice approaches Wonderland as an anthropologist, but maintains a strong sense of noblesse oblige that comes with her class status. She has confidence in her social position, education, and the Victorian virtue of good manners. Alice has a feeling of entitlement, particularly when comparing herself to Mabel, whom she declares has a ``poky little house," and no toys. Additionally, she flaunts her limited information base with anyone who will listen and becomes increasingly obsessed with the importance of good manners as she deals with the rude creatures of Wonderland. Alice maintains a superior attitude and behaves with solicitous indulgence toward those she believes are less privileged.
\BLOCK{for current_analysis in analysis}
\input{\VAR{current_analysis}.tex}
\newpage
\BLOCK{endfor}
%----------------------------------------------------------------------------------------
\end{document}
\subsection*{Malware (v. \VAR{selected_analysis['plugin_version']})}
{\fontfamily{lmss}\selectfont
\begin{longtable}{|p{3cm}|p{11.5cm}|}
\hline
MD5 & \VAR{selected_analysis['md5']} \\
\hline
System Version & \VAR{selected_analysis['system_version']} \\
\hline
Scanners Number & \VAR{selected_analysis['number_of_scanners']} \\
\hline
Positives & \VAR{selected_analysis['positives']} \\
\hline
Scanners
\BLOCK{for scanner in selected_analysis['scanners']}
& \VAR{scanner} \\
\BLOCK{endfor}
\hline
Scanns
\BLOCK{for scan in selected_analysis['scans']}
\BLOCK{for value in selected_analysis['scans'][scan]}
& \VAR{scan} :: \VAR{value}:\VAR{selected_analysis['scans'][scan][value]} \\
\BLOCK{endfor}
\BLOCK{endfor}
\hline
\BLOCK{if selected_analysis['summary']}
Summary
\BLOCK{for selected_summary in selected_analysis['summary']}
& \VAR{selected_summary | filter_chars} \\
\BLOCK{endfor}
\hline
\BLOCK{endif}
\end{longtable}
}
\ No newline at end of file
\begin{tabular}{|p{3cm}|p{11.5cm}|}
\hline
HID & \VAR{meta_data['hid'] | filter_chars}\\
\hline
\BLOCK{if 'device_name' in meta_data}
\cvname{\VAR{meta_data['device_name'] | filter_chars }}
\BLOCK{else}
\cvname{No Name}
\BLOCK{endif}
Device Name & \VAR{meta_data['device_name'] | filter_chars}\\
\hline
\BLOCK{if 'device_class' in meta_data}
\cvjobtitle{\VAR{meta_data['device_class'] | filter_chars }}
\BLOCK{else}
\cvjobtitle{No Class}
\BLOCK{endif}
Vendor & \VAR{meta_data['vendor'] | filter_chars}\\
\hline
\BLOCK{if 'vendor' in meta_data}
\cvdate{\VAR{meta_data['vendor'] | filter_chars }}
\BLOCK{else}
\cvdate{No Vendor}
\BLOCK{endif}
Device Class & \VAR{meta_data['device_class'] | filter_chars}\\
\hline
\BLOCK{if 'size' in meta_data}
\cvaddress{\VAR{meta_data['size'] | number_format}}
\BLOCK{else}
\cvaddress{No Size}
\BLOCK{endif}
Version & \VAR{meta_data['version'] | filter_chars}\\
\hline
\BLOCK{if 'version' in meta_data}
\cvnumberphone{\VAR{meta_data['version'] | filter_chars}}
\BLOCK{else}
\cvnumberphone{No Version}
\BLOCK{endif}
Release Date & \VAR{meta_data['release_date']}\\
\hline
\BLOCK{if 'release_date' in meta_data}
\cvsite{\VAR{meta_data['release_date']}}
\BLOCK{else}
\cvsite{No Release Date}
\BLOCK{endif}
Size & \VAR{meta_data['size'] | number_format}\\
\hline
\end{tabular}
\ No newline at end of file
\cvmail{}
% to change the icons: line 142 in twentysecondcv.cls
% all icons possible from: https://github.com/spagnuolocarmine/TwentySecondsCurriculumVitae-LaTex/raw/master/fontawesome.pdf
\ No newline at end of file
\subsection*{String Stats (v. \VAR{selected_analysis['plugin_version']})}
{\fontfamily{lmss}\selectfont
\begin{tabular}{|p{3cm}|p{11.5cm}|}
\hline
String Count & \VAR{selected_analysis['strings'] | elements_count}\\
\hline
\end{tabular}
}
\ No newline at end of file
\subsection*{String Eval Stats (v. \VAR{selected_analysis['plugin_version']})}
{\fontfamily{lmss}\selectfont
\begin{tabular}{|p{3cm}|p{11.5cm}|}
\hline
String Count & \VAR{selected_analysis['string_eval'] | elements_count}\\
\hline
\end{tabular}
}
\ No newline at end of file
\ProvidesClass{twentysecondcv}[2017/01/08 CV class]
\LoadClass{article}
\NeedsTeXFormat{LaTeX2e}
%----------------------------------------------------------------------------------------
% REQUIRED PACKAGES
%----------------------------------------------------------------------------------------
\RequirePackage[sfdefault]{ClearSans}
\RequirePackage[T1]{fontenc}
\RequirePackage{tikz}
\RequirePackage{xcolor}
\RequirePackage[absolute,overlay]{textpos}
\RequirePackage{ragged2e}
\RequirePackage{etoolbox}
\RequirePackage{ifmtarg}
\RequirePackage{ifthen}
\RequirePackage{pgffor}
\RequirePackage{marvosym}
\RequirePackage{parskip}
\DeclareOption*{\PassOptionsToClass{\CurrentOption}{article}}
\ProcessOptions\relax
\newbool{icon}
\DeclareOption{icon}{%
\booltrue{icon}
}
\DeclareOption{print}{\def\@cv@print{}}
\DeclareOption*{
\PassOptionsToClass{\CurrentOption}{article}
}
\ProcessOptions\relax
\ifbool{icon}{\RequirePackage{fontawesome}}{}
\usetikzlibrary{calc}
%----------------------------------------------------------------------------------------
% COLOURS
%----------------------------------------------------------------------------------------
\definecolor{white}{RGB}{255,255,255}
\definecolor{gray}{HTML}{4D4D4D}
\definecolor{sidecolor}{HTML}{E7E7E7}
\definecolor{mainblue_place_holder}{HTML}{0E5484}
\definecolor{maingray_place_holder}{HTML}{B9B9B9}
\definecolor{fraunhofer_dark_green}{HTML}{009879}% fraunhofer dark green
\definecolor{fraunhofer_light_green}{HTML}{69C0AC}% fraunhofer light green
\definecolor{mainblue}{HTML}{0E5484}
\definecolor{maingray}{HTML}{69C0AC}
%----------------------------------------------------------------------------------------
% MISC CONFIGURATIONS
%----------------------------------------------------------------------------------------
\renewcommand{\bfseries}{\color{gray}} % Make \textbf produce coloured text instead
\pagestyle{empty} % Disable headers and footers
\setlength{\parindent}{0pt} % Disable paragraph indentation
%----------------------------------------------------------------------------------------
% SIDEBAR DEFINITIONS
%----------------------------------------------------------------------------------------
\setlength{\TPHorizModule}{1cm} % Left margin
\setlength{\TPVertModule}{1cm} % Top margin
\newlength\imagewidth
\newlength\imagescale
\pgfmathsetlength{\imagewidth}{5cm}
\pgfmathsetlength{\imagescale}{\imagewidth/600}
\newlength{\TotalSectionLength} % Define a new length to hold the remaining line width after the section title is printed
\newlength{\SectionTitleLength} % Define a new length to hold the width of the section title
\newcommand{\profilesection}[1]{%
\setlength\TotalSectionLength{\linewidth}% Set the total line width
\settowidth{\SectionTitleLength}{\huge #1 }% Calculate the width of the section title
\addtolength\TotalSectionLength{-\SectionTitleLength}% Subtract the section title width from the total width
\addtolength\TotalSectionLength{-2.22221pt}% Modifier to remove overfull box warning
\vspace{8pt}% Whitespace before the section title
{\color{black!80} \huge #1 \rule[0.15\baselineskip]{\TotalSectionLength}{1pt}}% Print the title and auto-width rule
}
% Define custom commands for CV info
\newcommand{\cvdate}[1]{\renewcommand{\cvdate}{#1}}
\newcommand{\cvmail}[1]{\renewcommand{\cvmail}{#1}}
\newcommand{\cvnumberphone}[1]{\renewcommand{\cvnumberphone}{#1}}
\newcommand{\cvaddress}[1]{\renewcommand{\cvaddress}{#1}}
\newcommand{\cvsite}[1]{\renewcommand{\cvsite}{#1}}
\newcommand{\aboutme}[1]{\renewcommand{\aboutme}{#1}}
\newcommand{\profilepic}[1]{\renewcommand{\profilepic}{#1}}
\newcommand{\cvname}[1]{\renewcommand{\cvname}{#1}}
\newcommand{\cvjobtitle}[1]{\renewcommand{\cvjobtitle}{#1}}
% Command for printing the contact information icons
\newcommand*\icon[1]{\tikz[baseline=(char.base)]{\node[shape=circle,draw,inner sep=1pt, fill=mainblue,mainblue,text=white] (char) {#1};}}
% Command for printing skill progress bars
\newcommand\skills[1]{
\renewcommand{\skills}{
\begin{tikzpicture}
\foreach [count=\i] \x/\y in {#1}{
\draw[fill=maingray,maingray] (0,\i) rectangle (6,\i+0.4);
\draw[fill=white,mainblue](0,\i) rectangle (\y*6,\i+0.4);
\node [above right] at (0,\i+0.4) {\x};
}
\end{tikzpicture}
}
}
% Command for printing skills text
\newcommand\skillstext[1]{
\renewcommand{\skillstext}{
\begin{flushleft}
\foreach [count=\i] \x/\y in {#1}{
\x$ \star $\y
}
\end{flushleft}
}
}
%----------------------------------------------------------------------------------------
% SIDEBAR LAYOUT
%----------------------------------------------------------------------------------------
\newcommand{\makeprofile}{
\begin{tikzpicture}[remember picture,overlay]
\node [rectangle, fill=sidecolor, anchor=north, minimum width=9cm, minimum height=\paperheight+1cm] (box) at (-5cm,0.5cm){};
\end{tikzpicture}
%------------------------------------------------
\begin{textblock}{6}(0.5, 0.2)
%------------------------------------------------
\ifthenelse{\equal{\profilepic}{}}{}{
\begin{center}
\begin{tikzpicture}[x=\imagescale,y=-\imagescale]
%\clip (600/2, 567/2) circle (567/2);
\node[anchor=north west, inner sep=0pt, outer sep=0pt] at (0,0) {\includegraphics[width=\imagewidth]{\profilepic}};
\end{tikzpicture}
\end{center}
}
%------------------------------------------------
{\Huge\color{mainblue}\cvname}
%------------------------------------------------
{\Large\color{black!80}\cvjobtitle}
%------------------------------------------------
\renewcommand{\arraystretch}{1.6}
\begin{tabular}{p{0.5cm} @{\hskip 0.5cm}p{5cm}}
\ifthenelse{\equal{\cvdate}{}}{}{\textsc{\large\icon{\faIndustry}} & \cvdate\\}
\ifthenelse{\equal{\cvaddress}{}}{}{\textsc{\Large\icon{\faArrowsH}} & \cvaddress\\}
\ifthenelse{\equal{\cvnumberphone}{}}{}{\textsc{\Large\icon{\faCodeFork}} & \cvnumberphone\\}
\ifthenelse{\equal{\cvsite}{}}{}{\textsc{\large\icon{\faCalendar}} & \cvsite\\}
\ifthenelse{\equal{\cvmail}{}}{}{\textsc{\large\icon{@}} & \href{mailto:\cvmail}{\cvmail}}
\end{tabular}
%------------------------------------------------
\ifthenelse{\equal{\aboutme}{}}{}{
\profilesection{Crypto}
\begin{flushleft}
\aboutme
\end{flushleft}
}
%------------------------------------------------
\profilesection{Exp. Mitigation}
\skills
\skillstext
\scriptsize
%------------------------------------------------
\end{textblock}
}
%----------------------------------------------------------------------------------------
% COLOURED SECTION TITLE BOX
%----------------------------------------------------------------------------------------
% Command to create the rounded boxes around the first three letters of section titles
\newcommand*\round[2]{%
\tikz[baseline=(char.base)]\node[anchor=north west, draw,rectangle, rounded corners, inner sep=1.6pt, minimum size=5.5mm, text height=3.6mm, fill=#2,#2,text=white](char){#1};%
}
\newcounter{colorCounter}
\newcommand{\sectioncolor}[1]{%
{%
\round{#1}{
\ifcase\value{colorCounter}%
maingray\or%
mainblue\or%
maingray\or%
mainblue\or%
maingray\or%
mainblue\or%
maingray\or%
mainblue\or%
maingray\or%
mainblue\else%
maingray\fi%
}%
}%
\stepcounter{colorCounter}%
}
\renewcommand{\section}[1]{
{%
\color{gray}%
\Large\sectioncolor{#1}%
}
}
\renewcommand{\subsection}[1]{
\par\vspace{.5\parskip}{%
\large\color{gray} #1%
}
\par\vspace{.25\parskip}%
}
%----------------------------------------------------------------------------------------
% LONG LIST ENVIRONMENT
%----------------------------------------------------------------------------------------
\setlength{\tabcolsep}{0pt}
% New environment for the long list
\newenvironment{twenty}{%
\begin{tabular*}{\textwidth}{@{\extracolsep{\fill}}ll}
}{%
\end{tabular*}
}
\newcommand{\twentyitem}[4]{%
#1&\parbox[t]{0.83\textwidth}{%
\textbf{#2}%
\hfill%
{\footnotesize#3}\\%
#4\vspace{\parsep}%
}\\
}
%----------------------------------------------------------------------------------------
% SMALL LIST ENVIRONMENT
%----------------------------------------------------------------------------------------
\setlength{\tabcolsep}{0pt}
% New environment for the small list
\newenvironment{twentyshort}{%
\begin{tabular*}{\textwidth}{@{\extracolsep{\fill}}ll}
}{%
\end{tabular*}
}
\newcommand{\twentyitemshort}[2]{%
#1&\parbox[t]{0.83\textwidth}{%
\textbf{#2}%
}\\
}
%----------------------------------------------------------------------------------------
% MARGINS AND LINKS
%----------------------------------------------------------------------------------------
\RequirePackage[left=7.6cm,top=0.1cm,right=1cm,bottom=0.2cm,nohead,nofoot]{geometry}
\RequirePackage{hyperref}
\subsection*{Unpacker (v. \VAR{selected_analysis['plugin_version']})}
{\fontfamily{lmss}\selectfont
\begin{longtable}{|p{3cm}|p{11.5cm}|}
\hline
Plugin & \VAR{selected_analysis['plugin_used'] | filter_chars} \\
\hline
Extracted & \VAR{selected_analysis['number_of_unpacked_files']} \\
\hline
\BLOCK{if selected_analysis['output']}
\multicolumn{2}{|p{14.5cm}|}{Output:}\\
\multicolumn{2}{|p{14.5cm}|}{}\\
\multicolumn{2}{|p{14.5cm}|}{\VAR{selected_analysis['output'] | split_output_lines | filter_chars }} \\
\hline
\BLOCK{endif}
Entropy & \VAR{selected_analysis['entropy'] | nice_number} \\
\hline
\end{longtable}
}
\ No newline at end of file
import logging
from base64 import decodebytes
from collections import OrderedDict
from contextlib import suppress
from pathlib import Path
from time import localtime, strftime
from random import choice
import socket
import jinja2
from common_helper_files import human_readable_file_size
GENERIC_TEMPLATE = 'generic.tex'
MAIN_TEMPLATE = 'main.tex'
META_TEMPLATE = 'meta.tex'
PLUGIN_TEMPLATE_BLUEPRINT = '{}.tex'
LOGO_FILE = 'fact_logo.png'
CUSTOM_TEMPLATE_CLASS = 'twentysecondcv.cls'
LOGO_FILE = 'fact.png'
LATEX_CHARACTER_ESCAPES = OrderedDict([
('\\', ''),
('\'', ''),
('$', '\\$'),
('(', '$($'),
(')', '$)$'),
('[', '$[$'),
(']', '$]$'),
('#', '\\#'),
('%', '\\%'),
('&', '\\&'),
('_', '\\_'),
('{', '\\{'),
('}', '\\}'),
('^', '\\textasciicircum{}'),
('~', '\\textasciitilde{}'),
('>', '\\textgreater{}'),
('<', '\\textless{}'),
('\n', '\\newline ')
])
def render_number_as_size(number, verbose=True):
......@@ -29,39 +49,8 @@ def render_unix_time(unix_time_stamp):
return strftime('%Y-%m-%d %H:%M:%S', localtime(unix_time_stamp))
def render_number_as_string(number):
if isinstance(number, int):
return '{:,}'.format(number)
if isinstance(number, float):
return '{:,.2f}'.format(number)
if isinstance(number, str):
with suppress(ValueError):
return str(int(number))
return 'not available'
def replace_special_characters(data):
latex_character_escapes = OrderedDict()
latex_character_escapes['\\'] = ''
latex_character_escapes['\''] = ''
latex_character_escapes['$'] = '\\$'
latex_character_escapes['('] = '$($'
latex_character_escapes[')'] = '$)$'
latex_character_escapes['['] = '$[$'
latex_character_escapes[']'] = '$]$'
latex_character_escapes['#'] = '\\#'
latex_character_escapes['%'] = '\\%'
latex_character_escapes['&'] = '\\&'
latex_character_escapes['_'] = '\\_'
latex_character_escapes['{'] = '\\{'
latex_character_escapes['}'] = '\\}'
latex_character_escapes['^'] = '\\textasciicircum{}'
latex_character_escapes['~'] = '\\textasciitilde{}'
latex_character_escapes['>'] = '\\textgreater{}'
latex_character_escapes['<'] = '\\textless{}'
latex_character_escapes['\n'] = '\\newline '
for character, replacement in latex_character_escapes.items():
for character, replacement in LATEX_CHARACTER_ESCAPES.items():
if character in data:
data = data.replace(character, replacement)
return data
......@@ -73,33 +62,7 @@ def decode_base64_to_file(base64_string, filename, directory, suffix='png'):
return str(file_path)
def replace_characters_in_list(list_of_strings):
return [
replace_special_characters(item) for item in list_of_strings
]
def split_hash_string(hash_string, max_length=61):
if len(hash_string) > max_length:
hash_string = '{}\n{}'.format(hash_string[:max_length], hash_string[max_length:])
return hash_string
def split_long_lines(multiline_string, max_length=92):
def evaluate_split(line):
return line if len(line) <= max_length else '{}\n{}'.format(line[:max_length], line[max_length:])
return ''.join(
evaluate_split(line) for line in multiline_string.splitlines(keepends=True)
)
def item_contains_string(item, string):
if not isinstance(item, str):
return False
return string in item
# X-Executable in summary
def create_jinja_environment(templates_to_use='default'):
template_directory = Path(Path(__file__).parent.parent, 'templates', templates_to_use)
environment = jinja2.Environment(
......@@ -119,23 +82,153 @@ def create_jinja_environment(templates_to_use='default'):
return environment
def plugin_name(name):
return ' '.join((part.title() for part in name.split('_')))
def get_five_longest_entries(summary, top=5):
sorted_summary = dict()
if len(summary) < top + 1:
return summary
for key in sorted(summary, key=lambda key: len(summary[key]), reverse=True):
sorted_summary.update({key: summary[key]})
if len(sorted_summary) == top:
return sorted_summary
return sorted_summary
def exploit_mitigation(summary):
summary = summary['exploit_mitigations']['summary']
max_count = _count_mitigations(summary)
numbers = dict()
for key in ['PIE', 'RELRO', 'Canary', 'NX', 'FORTIFY']:
numbers[key] = _count_occurrences(key, summary)
return (
f'{{CANARY/{numbers["Canary"] / max_count}}},{{PIE/{numbers["PIE"] / max_count}}},'
f'{{RELRO/{numbers["RELRO"] / max_count}}},{{NX/{numbers["NX"] / max_count}}},'
f'{{FORTIFY\\_SOURCE/{numbers["FORTIFY"] / max_count}}}'
)
def _count_occurrences(key, summary):
return sum(
len(summary[entry])
for entry in summary
if key in entry and ('present' in entry or 'enabled' in entry)
)
def _count_mitigations(summary):
for mitigation in ['Canary', 'NX', 'RELRO', 'PIE', 'FORTIFY']:
count = _count_this_mitigation(summary, mitigation)
if count != 0:
return count
if count == 0:
count = 1
return count
def _count_this_mitigation(summary, mitigation):
count = 0
for selected_summary in summary:
if mitigation in selected_summary:
count += len(summary[selected_summary])
return count
def software_components(software_string):
software = software_string.strip()
ver_number = ''
if ' ' in software:
split_software_string = software.split(' ')
if len(split_software_string) > 2:
software, ver_number = _larger_two_components(split_software_string)
elif len(split_software_string[1]) > 0:
software, ver_number = _less_three_components(split_software_string)
return f'{ver_number}}}{{{replace_special_characters(software)}'
def _less_three_components(software_string):
software, ver_number = software_string
return _order_components(software, ver_number)
def _larger_two_components(software_string):
software = ''.join(software_string[:-1])
ver_number = software_string[-1]
return _order_components(software, ver_number)
def _order_components(software, ver_number):
try:
int(ver_number[0])
except ValueError:
return ver_number, software
return software, ver_number
def get_triples(analysis):
combined_triples = []
for desired in ['IPv4', 'IPv6', 'URI ']:
combined_triples.append(_get_desired_triple(analysis, desired))
return combined_triples
def _get_desired_triple(seleced_summary, which_desired):
desired_list = _ip_or_uri(seleced_summary, which_desired)
chosen_one = 'x x' * 60
while len(chosen_one) > 50:
chosen_one = choice(desired_list)
return f'{len(desired_list)}}}{{{which_desired}\\quad$\\>$ (incl. {replace_special_characters(chosen_one)})'
def _ip_or_uri(summary, which_select):
new_list = []
for data in summary:
if ('URI ' in which_select and not _validate_ip(data, socket.AF_INET) and not _validate_ip(data,
socket.AF_INET6)):
new_list.append(data)
elif 'IPv4' in which_select and _validate_ip(data, socket.AF_INET):
new_list.append(data)
elif 'IPv6' in which_select and _validate_ip(data, socket.AF_INET6):
new_list.append(data)
return new_list
def _validate_ip(ip, address_format):
try:
_ = socket.inet_pton(address_format, ip)
return True
except OSError:
return False
def get_x_entries(summary, how_many=10):
if len(summary) <= how_many:
return summary
return summary[:how_many]
def cve_criticals(summary):
f_string = []
else_count = len(summary)
for cve in summary:
if 'CRITICAL' in cve:
f_string.append(cve)
else_count -= 1
f_string.append(f'and {else_count} other uncritical')
return f_string
def _add_filters_to_jinja(environment):
environment.filters['number_format'] = render_number_as_size
environment.filters['nice_unix_time'] = render_unix_time
environment.filters['nice_number'] = render_number_as_string
environment.filters['filter_chars'] = replace_special_characters
environment.filters['elements_count'] = len
environment.filters['base64_to_png'] = decode_base64_to_file
environment.filters['check_list'] = lambda x: x if x else ['list is empty']
environment.filters['plugin_name'] = plugin_name
environment.filters['filter_list'] = replace_characters_in_list
environment.filters['split_hash'] = split_hash_string
environment.filters['split_output_lines'] = split_long_lines
environment.filters['contains'] = item_contains_string
environment.filters['top_five'] = get_five_longest_entries
environment.filters['sort'] = sorted
environment.filters['call_for_mitigations'] = exploit_mitigation
environment.filters['split_space'] = software_components
environment.filters['triplet'] = get_triples
environment.filters['x_entires'] = get_x_entries
environment.filters['cve_crits'] = cve_criticals
class TemplateEngine:
......@@ -143,18 +236,14 @@ class TemplateEngine:
self._environment = create_jinja_environment(template_folder if template_folder else 'default')
self._tmp_dir = tmp_dir
def render_main_template(self, analysis, meta_data):
def render_main_template(self, analysis):
template = self._environment.get_template(MAIN_TEMPLATE)
return template.render(analysis=analysis, meta_data=meta_data)
return template.render(analysis=analysis, tmp_dir=self._tmp_dir)
def render_meta_template(self, meta_data):
template = self._environment.get_template(META_TEMPLATE)
return template.render(meta_data=meta_data)
def render_analysis_template(self, plugin, analysis):
try:
template = self._environment.get_template(PLUGIN_TEMPLATE_BLUEPRINT.format(plugin))
except jinja2.TemplateNotFound:
logging.warning('Falling back on generic template for {}'.format(plugin))
template = self._environment.get_template(GENERIC_TEMPLATE)
return template.render(plugin_name=plugin, selected_analysis=analysis, tmp_dir=self._tmp_dir)
def render_template_class(self):
template = self._environment.get_template(CUSTOM_TEMPLATE_CLASS)
return template.render(tmp_dir=self._tmp_dir)
{"file_type": {"mime": "application/x-tar", "full": "POSIX tar archive (GNU)", "summary": {"application/font-sfnt": [324], "application/gzip": ["well, that's compressed!"], "application/octet-stream": [42], "application/pdf": ["nice document here"], "application/x-archive": [42,42,42], "application/x-cpio": [13], "application/x-executable": [123,21], "application/x-object": [1,23,56,78,3,23,67,34,1309,35,5454], "application/x-sharedlib": [1,2,3,4,5], "application/x-tex-tfm": [42], "audio/mpeg": ["nice song there."], "compression/zlib": [1,3,5,6,3,6,4,2,5,4,21,5,7,9,5,3], "data/raw": ["hi there.",1,2,3,4,5,6,"wanna have some data?"], "filesystem/dosmbr": [1,2,3,44,56,67,2], "filesystem/squashfs": [1,2,3,4,5,4,5,32,6,7,89,3], "image/gif": [1,2,3,4,5,6,7,"gif time"], "image/png": ["boom. an image"], "linux/avm-kernel-image-v1": ["some kernel data"], "text/plain": [1,2,3,4,5,6,"there was data"], "video/mp4": ["there was a video"]}, "analysis_date": 1591092558.1460986, "plugin_version": "1.0"}, "crypto_material": {"summary": {"SSLCertificate": ["nothing to see here"]}, "analysis_date": 1591092560.042629, "plugin_version": "0.5.2", "system_version": "3.7.1_1588174612"}, "software_components": {"summary": {"BusyBox 1.24.2": [8], "Linux Kernel 2.6.39": [7], "OpenSSL 1.0.2r": [5], "hostapd 2.7": [3], "libFLAC 1.3.2": [2], "wpa_supplicant 2.7": [1]}, "analysis_date": 1591092560.6536422, "plugin_version": "0.4.1", "system_version": "3.7.1_1588174612"}, "exploit_mitigations": {"skipped": "blacklisted file type", "summary": {"Canary disabled": [1,2,3,4,5], "Canary enabled": [6,7,8,9], "FORTIFY_SOURCE disabled": [1,2,3], "FORTIFY_SOURCE enabled": [4,5,6,7,8,9], "NX disabled": [1,2,3,4], "NX enabled": [5,6,7,8,9], "PIE - invalid ELF file": [1,2,3,4,5,6,7,8,9], "RELRO disabled": [1,2,3,4,5], "RELRO fully enabled": [6,7], "RELRO partially enabled": [8,9]}, "analysis_date": 1591092560.9982054, "plugin_version": "0.1.2"}, "cve_lookup": {"cve_results": {}, "summary": {"BusyBox 1.24.2 (CRITICAL)": ["dat data."], "Linux Kernel 2.6.39 (CRITICAL)": ["some data"], "OpenSSL 1.0.2r": ["also some data"], "hostapd 2.7": ["data"], "wpa_supplicant 2.7": ["data"]}, "analysis_date": 1591092564.6739304, "plugin_version": "0.0.4"}, "cpu_architecture": {"summary": {"ARM, 32-bit, big endian (M)": [1,2,3,4,5,6,7,8,9], "x86, 32-bit, little endian (M)": [1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,1,2,3,4,5,42]}, "analysis_date": 1591092565.5146425, "plugin_version": "0.3.2"}, "binwalk": {"signature_analysis": "some Binwalk output", "summary": {"something, that binwalk found": ["some data"]}, "entropy_analysis_graph": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeVwW5f7/8fcNCCgKoijumLtm7ktkphUnXHKpc8yjJJqdlpOWxSm3FLdvYZtHS9M0t056pF+LdY5mKWllkbiEZaJmqaiJigoILij3/P6Y4113oGJyO3jP6/l4zAPvua+Z+czc9w1vr2tmbodhGIYAAABgGz5WFwAAAIBriwAIAABgMwRAAAAAmyEAAgAA2AwBEAAAwGYIgAAAADZDAAQAALAZAiAAAIDNEAABAABshgAIAABgMwRAAAAAmyEAAgAA2AwBEAAAwGYIgAAAADZDAAQAALAZAiAAAIDNEAABAABshgAIAABgMwRAAAAAmyEAAgAA2AwBEAAAwGYIgAAAADZDAAQAALAZAiAAAIDNEAABAABshgAIAABgMwRAAAAAmyEAAgAA2AwBEAAAwGYIgAAAADZDAAQAALAZAiAAAIDNEAABAABshgAIAABgMwRAAAAAmyEAAijVFi1aJIfDcdHpm2++uaL1rVy5UhMnTvRMsQBwnfCzugAAKI7JkyfrhhtuKDS/QYMGV7SelStXatasWYRAALZGAARwXejevbvatWt3Tbd5/vx5OZ1O+fv7X9PtAoCnMQQM4Lq3d+9eORwOvfzyy5o7d67q16+vgIAAtW/fXhs3bnS1GzJkiGbNmiVJbsPIv1/H9OnTXevYvn27JOmzzz5T586dFRQUpIoVK6pPnz5KS0tzq2PixIlyOBzasWOH7rvvPgUHB6ty5coaMWKEzpw542rXpUsXtWzZssh9ady4saKjo0v0+ADA79EDCOC6kJ2drczMTLd5DodDlStXdj1eunSpTp48qUceeUQOh0Mvvvii7r33Xv38888qU6aMHnnkEf3yyy9avXq1/vWvfxW5nYULF+rMmTN6+OGHFRAQoEqVKmnNmjXq3r276tWrp4kTJ+r06dN67bXX1KlTJ23ZskV169Z1W8d9992nunXrKiEhQd98841effVVnThxQm+99ZYkadCgQXrooYe0bds2NW/e3LXcxo0btWvXLo0bN66EjhoAXIQBAKXYwoULDUlFTgEBAYZhGMaePXsMSUblypWN48ePu5b98MMPDUnGf/7zH9e8YcOGGUX96ruwjuDgYOPIkSNuz7Vq1cqoWrWqcezYMde8rVu3Gj4+PkZsbKxr3oQJEwxJRu/evd2Wf+yxxwxJxtatWw3DMIysrCwjMDDQGDVqlFu7J554wggKCjJyc3Ov9DABwBWhBxDAdWHWrFlq1KiR2zxfX1+3x/3791doaKjrcefOnSVJP//8c7G38+c//1lVqlRxPT506JBSU1M1cuRIVapUyTW/RYsW+tOf/qSVK1cWWsewYcPcHj/++ON6/fXXtXLlSrVo0UIhISHq06eP/v3vfyshIUEOh0MFBQVKTExU3759FRQUVOx6AeCPIAACuC506NDhsheB1KlTx+3xhTB44sSJYm/n91ca79u3T5J5bt7vNW3aVJ988ony8vLcQlvDhg3d2tWvX18+Pj7au3eva15sbKwSExP15Zdf6rbbbtOaNWt0+PBhDRo0qNi1AsAfxUUgALzG73sELzAMo9jrKFu2bEmV43LhQpPfio6OVnh4uN5++21J0ttvv61q1aopKiqqxLcPAL9HAARgK0WFsUuJiIiQJO3cubPQczt27FBYWFihIdsff/zR7fHu3bvldDrdLhbx9fXVwIED9e677+rEiRNavny5BgwYcNEQCwAliQAIwFYuhLWsrKxita9evbpatWqlxYsXuy2zbds2ffrpp+rRo0ehZS7cauaC1157TZJ5L8PfGjRokE6cOKFHHnlEubm5uv/++69oXwDgj+IcQADXhY8//lg7duwoNP+WW26Rj0/x/y/btm1bSdITTzyh6Oho+fr66q9//esll3nppZfUvXt3RUZG6sEHH3TdBiYkJKTIbxTZs2ePevfurW7duik5OVlvv/22Bg4cWOjef61bt1bz5s31//7f/1PTpk3Vpk2bYu8HAFwNAiCA60J8fHyR8xcuXKiuXbsWez333nuvHn/8cS1btkxvv/22DMO4bACMiorSqlWrNGHCBMXHx6tMmTLq0qWLXnjhhSK/ni4xMVHx8fEaPXq0/Pz8NHz4cL300ktFrjs2NlYjR47k4g8A15TDuJKzowEAFzVx4kRNmjRJR48eVVhYWLGWmTFjhp566int3bu30FXMAOApnAMIABYxDEPz589Xly5dCH8ArimGgAHgGsvLy9NHH32ktWvX6vvvv9eHH35odUkAbIYACADX2NGjRzVw4EBVrFhRY8eOVe/eva0uCYDNcA4gAACAzXAOIAAAgM0QAAEAAGyGAAgAAGAzXARyFZxOp3755RdVqFDhir9fFAAAWMMwDJ08eVI1atS4om8S8iYEwKvwyy+/qHbt2laXAQAA/oD9+/erVq1aVpdhCXvG3hJSoUIFq0sAAAB/kJ3/jhMArwLDvgAAXL/s/HecAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZvysLgAXMVbmq3Ne0vMW1wIAKP0ellReUq6kuRbXUgI2SqomKUNSe4tr8UYEwNLKT2b/LK8QAKA4yksKtrqIklNNUi2ri/BiDAEDAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYjNcEwC+++EK9evVSjRo15HA4tHz58ssus27dOrVp00YBAQFq0KCBFi1a5PlCAQAALOY1ATAvL08tW7bUrFmzitV+z5496tmzp26//XalpqbqySef1N/+9jd98sknHq4UAADAWn5WF1BSunfvru7duxe7/Zw5c3TDDTfolVdekSQ1bdpU69ev1z//+U9FR0d7qkwAAADLeU0P4JVKTk5WVFSU27zo6GglJydbVBEAAMC14TU9gFcqIyND4eHhbvPCw8OVk5Oj06dPq2zZsoWWOXv2rM6ePet6nJOT4/E6vZGPj+R0mv92OCTDKNymfHnpzBnp/PmLL1tcF9sGYAd8ZryHj48UFiYdPcrrg6tn2wD4RyQkJGjSpEnXZFsOh2TI/MB/ukby9S3c5sQJKTBQKiKr6vhxqVKlK9vm2bNSQMCvj7dskfLzpYoVpSZNrmxdRdm1S2rU6PLtCgrc9/fECbO2atV+nff995Kfn1SunBQRYc47dEiqXFny97/6Wovjl1/MOi6cMbB3rxQebr4e+flXVseJE1JoqPnvtDRzPeXKmevwuYJ++tWrpTvuKPr9ciV+W/+aNdINN5g1lS9vvrcCAqSgoEuv49Qps46ff5aqVzffR0W1KVfu18fnz5uvq2Qek9xcqXZt8/HOnVJOjtS+/a/tDx6Uata8dB1JSVKDBr++TyRpzx5zuQv7uG2bGZIqVpTq1Ln4un7/3pSkvLzLH4s/avdu81jn5ZXMZ9DTdu6UGjd2n7djx6+1Hztm/seuZs2ij+VvJSWZberUufy+//Z981vFeX9Ihd+HxZGdLYWEXLrN1q1Sy5ZXtt6iHD0qValy+Xb9kqXMfDMkvrTQPC67dkkVKkidO5ttfvu7piiX26+ffpLq17+y+i+4sB9bt0rp6VKvXpduX6WfpMw/ti1cnsMwvO//EQ6HQx988IH69u170Ta33Xab2rRpo+nTp7vmLVy4UE8++aSys7OLXKaoHsDaF/46laBq1aQjj0pOmWP0SV1KfBMAAC/jCoD+0v+LtLqaqxfZTwrIlA6Xkaqd88w2srOzFRwc7JmVl3K27QGMjIzUypUr3eatXr1akZEX/9QEBAQo4LddZB7SrJl0xONbAQCg9PPzk+ShAGhnXhMAc3NztXv3btfjPXv2KDU1VZUqVVKdOnU0ZswYHTx4UG+99ZYk6dFHH9XMmTM1cuRIDR06VJ999pneeecdrVixwqpdcGnQQFr3v3//tnt29mxzSCg/3xxGOX7cHG4MDTWHxsqUMbvm27Y1hx1+e4rjvn3S55+bQ6QpKdKf/yxlZprr2b9fSk42h9qOHDGHjiMizKGbvXvNYZpKlaQbbzSHPdPSzCG9kyelevWk06elm24ya/Hzkw4cMGvJypK2bzeHVqpUMYcP09PNIc29e6XgYHO46MQJs+4NG6SqVc19SU83669TR8rIMOe1a2du69tvzfUZhjlE5O9vDnWcPm1uv0IF6dw5c7+CgqS6dc1jduyYuf5y5cz6DxyQEhJ+HTrasUN6+22pRg1zWT8/s8b27c3j0qGDua5588yabrjB3I8zZ6Ratcxj9PPP5pDdHXeYr8HBg+aQSb160saN5nM9eri/3rt3m8vddZf5mixbZg7h7NtnDk01a2Yei127zH3s1s0casvNNffvQif01q3m8s2aST17mvOWLzeHxuvXN9d/4oQ5/Ll3r3mcQkLMY3jhmP/wg7mtkyelFi3ModHhw38dfj9+XPr3v81j/uCD0nffSa1amc+dPm2+R0+fNof6K1Uyj9OuXeb2+/Y13wN795rHxcfHPOZ33mm+hw8fNmtt1co8pqmp0rp10v33m++9tDTz/Xfnneb2/vtf83Vs1cp8bVNTzWPSrp15HI4cMR8fP26uv25d87WtWVN6/31zXzt0+HUIXzLXn51trqtqVXNYuEkT8zh/84308ce/DkHfcIP5vjp3ztx+kyZm/adPm++bZs3MY/v999LKleZnIjRUuvtucx1ffGEe1/x86csvzWUqVDCPfc2aZu0ZGeZyVaqYxyQszHxfHjxovv8rVTJr++kn83HVqlLDhub77bcWLjRrPHjQfL5mTXO4e+tW87hGR5ufh9RU83NcrZq5rtxcs12NGuYQop+fuX8hIeaw9PHj5mkoGzean/XQUPP3z4YN5vOtWpnHuW1bc/82bjTradPGfB/26mW+99auNY9Vv37m819+Kf3nP+bxr1vX3Hb9+ubvri++MN/L2dnm56BmTfP1rlXL/HwFB5v78MUX5qk0Dod5PEJDzf04c8b8zBmG2f6nn8z3c/Xq5utXvrz5e7J6dbOWggJzP2vWNGtITzePVYsW5mc0OPjXz+CWLeYxCwgw223aZG6nTBnz97phmJ/pGjWke+/9dZkvvjCP/Z/+ZL4f8vLMz+qpU+ZxMgzzWNSvb/48dMhs5+dnvgfKlDFfr4Jbf33Nf/jB3LdvvjF/53XoYP47PFxq3txcb3CwuQ0fH3Ndvr5m3SEh5jFt0sT8fbVxo7mPBQXme3LDhl+PU4UK5naqVDGP8dmz5usdEmK2/f5787Nw6JD5+t1wg1nvhx+ar8vAge5/q3bvlmbONH9fXOiO8bXt5aoeZniJtWvXGjLzkts0ePBgwzAMY/DgwUaXLl0KLdOqVSvD39/fqFevnrFw4cIr2mZ2dnaR27zaKSBAhuJlaOL/fnpgG0zWTpUqyQgKsr6O4kwhITJ69JBRpYr1tXhqql/fnKyuo6QnPz/ra2C6hlOczL8bcaWglqucGjaUcSZMhiEZJ8p7bjvZ2dklE0KuQ155DuC1kpOTo5DLnQX8R8XLPAHQKWmyZzYBAPAicZKCJeVImmZxLVepQQNpW5Z5DmBWeSk01zPbsfM5gHSsAgCAUoWuKc8jAAIAANgMARAAAJQq9AB6HgEQAACUKgRAzyMAAgCAUoUA6HkEQAAAAJshAAIAgFLltz2ADuvK8GoEQAAAUKowBOx5BEAAAFCqEAA9jwAIAABKL8aAPYIACAAAShV6AD2PAAgAAEoVAqDnEQABAECpQgD0PAIgAACAzRAAAQBAqUIPoOcRAAEAQKlCAPQ8AiAAAChVCICeRwAEAAClFrcB9AwCIAAAKFXoAfQ8AiAAAChVnE6rK/B+BEAAAFB6MQbsEQRAAABQqjAE7HkEQAAAUKoQAD2PAAgAAEoVAqDnEQABAABshgAIAABKFXoAPY8ACAAAShUCoOcRAAEAQKlCAPQ8AiAAAIDNEAABAECpQg+g5xEAAQBAqfLbAMgXgXgGARAAAJQq9AB6HgEQAACUXnQBegQBEAAAlCr0AHoeARAAAJQqBEDPIwACAIBShQDoeQRAAAAAmyEAAgCAUoUeQM8jAAIAgFKFAOh5BEAAAFCqEAA9jwAIAABgMwRAAABQqtAD6HkEQAAAUKrwXcCeRwAEAAClCj2AnkcABAAApRddgB5BAAQAAKUKPYCeRwAEAAClCgHQ8wiAAAAANkMABAAAsBkCIAAAKHUYBfYsAiAAAIDNeFUAnDVrlurWravAwEB17NhRKSkpl2w/ffp0NW7cWGXLllXt2rX11FNP6cyZM9eoWgAAAGt4TQBMTExUXFycJkyYoC1btqhly5aKjo7WkSNHimy/dOlSjR49WhMmTFBaWprmz5+vxMREjR079hpXDgAAcG15TQCcNm2aHnroIT3wwANq1qyZ5syZo3LlymnBggVFtv/666/VqVMnDRw4UHXr1tVdd92lAQMGXLbXEAAA4HrnFQEwPz9fmzdvVlRUlGuej4+PoqKilJycXOQyt9xyizZv3uwKfD///LNWrlypHj16XHQ7Z8+eVU5OjtsEAABwvfGzuoCSkJmZqYKCAoWHh7vNDw8P144dO4pcZuDAgcrMzNStt94qwzB0/vx5Pfroo5ccAk5ISNCkSZNKtHYAAHBxfBOcZ3hFD+AfsW7dOj3//PN6/fXXtWXLFr3//vtasWKFpkyZctFlxowZo+zsbNe0f//+a1gxAAD2kZVl/sw5aW0d3soregDDwsLk6+urw4cPu80/fPiwqlWrVuQy48eP16BBg/S3v/1NknTTTTcpLy9PDz/8sJ599ln5+BTOxgEBAQoICCj5HQAAAG7Onzd/FhRYW4e38ooeQH9/f7Vt21ZJSUmueU6nU0lJSYqMjCxymVOnThUKeb6+vpIkgy8hBAAAXswregAlKS4uToMHD1a7du3UoUMHTZ8+XXl5eXrggQckSbGxsapZs6YSEhIkSb169dK0adPUunVrdezYUbt379b48ePVq1cvVxAEAADwRl4TAPv376+jR48qPj5eGRkZatWqlVatWuW6MCQ9Pd2tx2/cuHFyOBwaN26cDh48qCpVqqhXr1567rnnrNoFAACAa8JhMN75h+Xk5CgkJMQzK4+XOUDvlDTZM5sAAHiROEnBknIkTbO4lhKwX1ItSQck1fbQNrKzsxUcHOyhtZduXnEOIAAAAIqPAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZiwPgBMmTNC+ffusLgMAAMA2LA+AH374oerXr68777xTS5cu1dmzZ60uCQAAwKtZHgBTU1O1ceNG3XjjjRoxYoSqVaumv//979q4caPVpQEAAHglywOgJLVu3VqvvvqqfvnlF82fP18HDhxQp06d1KJFC82YMUPZ2dlWlwgAAOA1SkUAvMAwDJ07d075+fkyDEOhoaGaOXOmateurcTERKvLAwAA8AqlIgBu3rxZw4cPV/Xq1fXUU0+pdevWSktL0+eff64ff/xRzz33nJ544onLrmfWrFmqW7euAgMD1bFjR6WkpFyyfVZWloYNG6bq1asrICBAjRo10sqVK0tqtwAAAEolP6sLuOmmm7Rjxw7dddddmj9/vnr16iVfX1+3NgMGDNCIESMuuZ7ExETFxcVpzpw56tixo6ZPn67o6Gjt3LlTVatWLdQ+Pz9ff/rTn1S1alW9++67qlmzpvbt26eKFSuW6P4BAACUNpYHwPvuu09Dhw5VzZo1L9omLCxMTqfzkuuZNm2aHnroIT3wwAOSpDlz5mjFihVasGCBRo8eXaj9ggULdPz4cX399dcqU6aMJKlu3bp/fEcAAACuE5YPAY8fP94V/gzDkGEYV7yO/Px8bd68WVFRUa55Pj4+ioqKUnJycpHLfPTRR4qMjNSwYcMUHh6u5s2b6/nnn1dBQcFFt3P27Fnl5OS4TQAAANcbywOgJM2fP1/NmzdXYGCgAgMD1bx5c7355pvFXj4zM1MFBQUKDw93mx8eHq6MjIwil/n555/17rvvqqCgQCtXrtT48eP1yiuv6P/+7/8uup2EhASFhIS4ptq1axe7RgAAgNLC8iHg+Ph4TZs2TY8//rgiIyMlScnJyXrqqaeUnp6uyZMne2S7TqdTVatW1dy5c+Xr66u2bdvq4MGDeumllzRhwoQilxkzZozi4uJcj3NycgiBAADgumN5AJw9e7bmzZunAQMGuOb17t1bLVq00OOPP16sABgWFiZfX18dPnzYbf7hw4dVrVq1IpepXr26ypQp43bBSdOmTZWRkaH8/Hz5+/sXWiYgIEABAQHF3TUAAIBSyfIh4HPnzqldu3aF5rdt21bnz58v1jr8/f3Vtm1bJSUlueY5nU4lJSW5ehV/r1OnTtq9e7fbxSW7du1S9erViwx/AAAA3sLyADho0CDNnj270Py5c+cqJiam2OuJi4vTvHnztHjxYqWlpenvf/+78vLyXFcFx8bGasyYMa72f//733X8+HGNGDFCu3bt0ooVK/T8889r2LBhV79TAAAApZjlQ8CSeRHIp59+qptvvlmStGHDBqWnpys2NtbtnLtp06ZddB39+/fX0aNHFR8fr4yMDLVq1UqrVq1yXRiSnp4uH59f827t2rX1ySef6KmnnlKLFi1Us2ZNjRgxQqNGjfLQXgIAAJQODuOP3HelBN1+++3FaudwOPTZZ595uJork5OTo5CQEM+sPF5m/6xTkmeugwEAeJM4ScGSciRdvL/kurFfUi1JByR56nLL7OxsBQcHe2jtpZvlPYBr1661ugQAAABbsfwcwN86cOCADhw4YHUZAAAAXs3yAOh0OjV58mSFhIQoIiJCERERqlixoqZMmXLZr38DAADAlbN8CPjZZ5/V/PnzNXXqVHXq1EmStH79ek2cOFFnzpzRc889Z3GFAAAA3sXyALh48WK9+eab6t27t2vehatyH3vsMQIgAABACbN8CPj48eNq0qRJoflNmjTR8ePHLagIAADAu1keAFu2bKmZM2cWmj9z5ky1bNnSgooAAAC8m+VDwC+++KJ69uypNWvWuL62LTk5Wfv379fKlSstrg4AAMD7WN4D2KVLF+3atUv33HOPsrKylJWVpXvvvVc7d+5U586drS4PAADA61jaA3ju3Dl169ZNc+bM4WIPAACAa8TSHsAyZcrou+++s7IEAAAA27F8CPj+++/X/PnzrS4DAADANiy/COT8+fNasGCB1qxZo7Zt2yooKMjt+WnTvOAbrQEAAEoRywPgtm3b1KZNG0nSrl27LK4GAADA+1keANeuXWt1CQAAALZi+TmAQ4cO1cmTJwvNz8vL09ChQy2oCAAAwLtZHgAXL16s06dPF5p/+vRpvfXWWxZUBAAA4N0sGwLOycmRYRgyDEMnT55UYGCg67mCggKtXLlSVatWtao8AAAAr2VZAKxYsaIcDoccDocaNWpU6HmHw6FJkyZZUBkAAIB3sywArl27VoZh6I477tB7772nSpUquZ7z9/dXRESEatSoYVV5AAAAXsuyANilSxdJ0p49e1S7dm35+Fh+OiIAAIAtWH4bmIiICGVlZSklJUVHjhyR0+l0ez42NtaiygAAALyT5QHwP//5j2JiYpSbm6vg4GA5HA7Xcw6HgwAIAABQwiwfd/3HP/6hoUOHKjc3V1lZWTpx4oRrOn78uNXlAQAAeB3LA+DBgwf1xBNPqFy5claXAgAAYAuWB8Do6Ght2rTJ6jIAAABsw/JzAHv27KlnnnlG27dv10033aQyZcq4Pd+7d2+LKgMAAPBOlgfAhx56SJI0efLkQs85HA4VFBRc65IAAAC8muUB8Pe3fQEAAIBnWXYOYI8ePZSdne16PHXqVGVlZbkeHzt2TM2aNbOiNAAAAK9mWQD85JNPdPbsWdfj559/3u22L+fPn9fOnTutKA0AAMCrWRYADcO45GMAAAB4huW3gQEAAMC1ZVkAdDgcbl/7dmEeAAAAPMuyq4ANw9CQIUMUEBAgSTpz5oweffRRBQUFSZLb+YEAAAAoOZYFwMGDB7s9vv/++wu1iY2NvVblAAAA2IZlAXDhwoVWbRoAAMDWuAgEAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGzGqwLgrFmzVLduXQUGBqpjx45KSUkp1nLLli2Tw+FQ3759PVwhAACA9bwmACYmJiouLk4TJkzQli1b1LJlS0VHR+vIkSOXXG7v3r16+umn1blz52tUKQAAgLW8JgBOmzZNDz30kB544AE1a9ZMc+bMUbly5bRgwYKLLlNQUKCYmBhNmjRJ9erVu4bVAgAAWMcrAmB+fr42b96sqKgo1zwfHx9FRUUpOTn5ostNnjxZVatW1YMPPlis7Zw9e1Y5OVNeciIAACAASURBVDluEwAAwPXGKwJgZmamCgoKFB4e7jY/PDxcGRkZRS6zfv16zZ8/X/PmzSv2dhISEhQSEuKaateufVV1AwAAWMErAuCVOnnypAYNGqR58+YpLCys2MuNGTNG2dnZrmn//v0erBIAAMAz/KwuoCSEhYXJ19dXhw8fdpt/+PBhVatWrVD7n376SXv37lWvXr1c85xOpyTJz89PO3fuVP369QstFxAQoICAgBKuHgAA4Nryih5Af39/tW3bVklJSa55TqdTSUlJioyMLNS+SZMm+v7775Wamuqaevfurdtvv12pqakM7QIAAK/mFT2AkhQXF6fBgwerXbt26tChg6ZPn668vDw98MADkqTY2FjVrFlTCQkJCgwMVPPmzd2Wr1ixoiQVmg8AAOBtvCYA9u/fX0ePHlV8fLwyMjLUqlUrrVq1ynVhSHp6unx8vKLDEwAA4Ko4DMMwrC7iepWTk6OQkBDPrDxe5gC9U9Jkz2wCAOBF4iQFS8qRNM3iWkrAfkm1JB2Q5KkTs7KzsxUcHOyhtZdudIkBAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZrwqAM6aNUt169ZVYGCgOnbsqJSUlIu2nTdvnjp37qzQ0FCFhoYqKirqku0BAAC8hdcEwMTERMXFxWnChAnasmWLWrZsqejoaB05cqTI9uvWrdOAAQO0du1aJScnq3bt2rrrrrt08ODBa1w5AADAteUwDMOwuoiS0LFjR7Vv314zZ86UJDmdTtWuXVuPP/64Ro8efdnlCwoKFBoaqpkzZyo2NrZY28zJyVFISMhV1X1R8TLjuVPSZM9sAgDgReIkBUvKkTTN4lpKwH5JtSQdkFTbQ9vIzs5WcHCwh9ZeunlFD2B+fr42b96sqKgo1zwfHx9FRUUpOTm5WOs4deqUzp07p0qVKl20zdmzZ5WTk+M2AQAAXG+8IgBmZmaqoKBA4eHhbvPDw8OVkZFRrHWMGjVKNWrUcAuRv5eQkKCQkBDXVLu2p/5PAgAA4DleEQCv1tSpU7Vs2TJ98MEHCgwMvGi7MWPGKDs72zXt37//GlYJAABQMvysLqAkhIWFydfXV4cPH3abf/jwYVWrVu2Sy7788suaOnWq1qxZoxYtWlyybUBAgAICAq66XgAAACt5RQ+gv7+/2rZtq6SkJNc8p9OppKQkRUZGXnS5F198UVOmTNGqVavUrl27a1EqAACA5byiB1CS4uLiNHjwYLVr104dOnTQ9OnTlZeXpwceeECSFBsbq5o1ayohIUGS9MILLyg+Pl5Lly5V3bp1XecKli9fXuXLl7dsPwAAADzNawJg//79dfToUcXHxysjI0OtWrXSqlWrXBeGpKeny8fn1w7P2bNnKz8/X3/5y1/c1jNhwgRNnDjxWpYOAABwTXnNfQCtwH0AAQClBvcBvGLcBxAAAAC2QQAEAACwGQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgMARAAAMBmCIAAAAA2QwAEAACwGQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgMARAAAMBmCIAAAAA242d1AQCA0q1MmTKKiIiQr6+v1aXgUkIlBUnyldTY4lpKwDlJp/7380p2x+l06tChQ8rNzfVMYV6CAAgAuKiaNWtq2bJlKlu2rNWl4Ep0t7qAq3f8f5MkLfkDy3/wwQd6/vnnZRhGCVblPQiAAIAiORwOTZw4UUFBQWrYsKF8fDhrCKWf0+lUbm6u+vbtK0l67rnnLK6odCIAAgCKFBYWptatWysiIkLly5e3uhyg2C68X++55x4tXrxYBw4csLii0of/zgEAihQaGipJCggIsLgS4MpdCIGtW7dW1apVLa6m9CEAAgCK5HA43H4C15MLpywYhqEaNWrQi/07BEAAAOC18vPz5evrS0/27xAAAQC2s27dOjkcDmVlZVldSiGLFi1SxYoVL9lmyJAhroscriWrtlsS6Ml2RwAEAHiNC8HuYtPtt98uSbrlllt06NAhhYSEWFzxHzNjxgwtWrTI6jIua+/evXI4HEpNTbW6FPwOVwEDALzGhWD3ex999JEeffRRPfbYY5Ikf39/VatW7VqXp/z8fPn7+1/1eq7X4IrSgx5AAIDXuBDsfjudOHFCTz/9tMaOHat+/fpJKjwEfGHYdfny5WrYsKECAwMVHR2t/fv3X3J7o0aNUqNGjVSuXDnVq1dP48eP17lz51zPT5w4Ua1atdKbb76pG264QYGBgZKkrKwsPfLIIwoPD1dgYKCaN2+u//73v27r/uSTT9S0aVOVL19e3bp1cwu2vx2KnTt3rmrUqCGn0+m2fJ8+fTR06FDX4w8//FBt2rRRYGCg6tWrp0mTJun8+fMX3beCggLFxcWpYsWKqly5skaOHFnopsqrVq3Srbfe6mpz991366effnI9f8MNN0gyr8R1OBzq2rWrJGnjxo3605/+pLCwMIWEhKhLly7asmXLJY81ShYBEADgtbKystSnTx917dpVU6ZMuWTbU6dO6bnnntNbb72lr776SllZWfrrX/96yWUqVKigRYsWafv27ZoxY4bmzZunf/7zn25tdu/erffee0/vv/++UlNT5XQ61b17d3311Vd6++23tX37dk2dOtXtq/ZOnTqll19+Wf/617/0xRdfKD09XU8//XSRNfTr10/Hjh3T2rVrXfOOHz+uVatWKSYmRpL05ZdfKjY2ViNGjND27dv1xhtvaNGiRZe8SfIrr7yiRYsWacGCBVq/fr2OHz+uDz74wK1NXl6e4uLitGnTJiUlJcnHx0f33HOPK4ympKRIktasWaNDhw7p/ffflySdPHlSgwcP1vr16/XNN9+oYcOG6tGjh06ePHnJ442SwxAwAKDY2s1tp4zcjGu+3Wrlq2nTw5uuaBmn06mBAwfKz89PS5YsuexFAOfOndPMmTPVsWNHSdLixYvVtGlTpaSkqEOHDkUuM27cONe/69atq6efflrLli3TyJEjXfPz8/P11ltvqUqVKpKkTz/9VCkpKUpLS1OjRo0kSfXq1StUy5w5c1S/fn1J0vDhwzV58uQiawgNDVX37t21dOlS3XnnnZKkd999V2FhYa5zHidNmqTRo0dr8ODBru1NmTJFI0eO1IQJE4pc7/Tp0zVmzBjde++9kqQ5c+bok08+cWvz5z//2e3xggULVKVKFW3fvl3Nmzd37XPlypXdhtzvuOMOt+Xmzp2rihUr6vPPP9fdd99dZD0oWQRAAECxZeRm6ODJg1aXUSxjx45VcnKyUlJSVKFChcu29/PzU/v27V2PmzRpoooVKyotLe2iATAxMVGvvvqqfvrpJ+Xm5ur8+fMKDg52axMREeEKQpKUmpqqWrVqucJfUcqVK+cKf5JUvXp1HTly5KLtY2Ji9NBDD+n1119XQECAlixZor/+9a+ue+Ft3bpVX331lVuPX0FBgc6cOaNTp06pXLlybuvLzs7WoUOHXGH4wvFp166d2zDwjz/+qPj4eG3YsEGZmZmunr/09HQ1b978ovUePnxY48aN07p163TkyBEVFBTo1KlTSk9Pv+gyKFkEQABAsVUrf+0vnPgj2122bJlefvllrVixQg0bNvRITcnJyYqJidGkSZMUHR2tkJAQLVu2TK+88opbu6CgILfHZcuWvey6y5Qp4/bY4XAUOv/ut3r16iXDMLRixQq1b99eX375pdtQdG5uriZNmuTqzfutC+cl/hG9evVSRESE5s2b5zoPsXnz5srPz7/kcoMHD9axY8c0Y8YMRUREKCAgQJGRkZddDiWHAAgAKLYrHYa1Qmpqqh588EFNnTpV0dHRxV7u/Pnz2rRpk6u3b+fOncrKylLTpk2LbP/1118rIiJCzz77rGvevn37LrudFi1a6MCBA9q1a9clewGvRGBgoO69914tWbJEu3fvVuPGjdWmTRvX823atNHOnTvVoEGDYq0vJCRE1atX14YNG3TbbbdJMo/P5s2bXes9duyYdu7cqXnz5qlz586SpPXr17ut58IVzwUFBW7zv/rqK73++uvq0aOHJGn//v3KzMz8A3uOP4oACADwGpmZmerbt6+6du2q+++/XxkZ7ucr+vr6ug3H/laZMmX0+OOP69VXX5Wfn5+GDx+um2+++aLDvw0bNlR6erqWLVum9u3ba8WKFYUukihKly5ddNttt+nPf/6zpk2bpgYNGmjHjh1yOBzq1q3ble/0/8TExOjuu+/WDz/8oPvvv9/tufj4eN19992qU6eO/vKXv8jHx0dbt27Vtm3b9H//939Frm/EiBGaOnWqGjZsqCZNmmjatGluN84ODQ1V5cqVNXfuXFWvXl3p6ekaPXq02zqqVq2qsmXLatWqVapVq5YCAwMVEhKihg0b6l//+pfatWunnJwcPfPMM8XqGUXJ4SpgAIDXWLFihfbt26eVK1eqevXqhabfnuP3e+XKldOoUaM0cOBAderUSeXLl1diYuJF2/fu3VtPPfWUhg8frlatWunrr7/W+PHji1Xne++9p/bt22vAgAFq1qyZRo4cWaiX7ErdcccdqlSpknbu3KmBAwe6PRcdHa3//ve/+vTTT9W+fXvdfPPN+uc//6mIiIiLru8f//iHBg0apMGDBysyMlIVKlTQPffc43rex8dHy5Yt0+bNm9W8eXM99dRTeumll9zW4efnp1dffVVvvPGGatSooT59+kiS5s+frxMnTqhNmzYaNGiQnnjiCVWtWvWq9h9XxmFc6qQCXFJOTo7nbsYZLzOeOyUVfeEXAHhU48aNtWTJEjVt2rTQRQLeZtGiRXryySdL5VfD4Y85deqU0tLSNHbsWB07dkz79u0rNMycnZ1d6KIdu6AHEAAAwGYIgAAAADZDAAQA2N6QIUMY/oWtEAABAABshgAIAABgMwRAAAAAmyEAAgAA2AwBEAAAwGYIgAAAADZDAAQAoBjWrVsnh8Nx1beLmTt3rmrXri0fHx9Nnz79D69nyJAh6tu371XV4ildu3bVk08+eck2DodDy5cvv0YV4fcIgAAArzJkyBA5HI5CU7du3awuTTk5ORo+fLhGjRqlgwcP6uGHHy7U5mL1X5gWL14sSZoxY4YWLVp0jfeg5Bw6dEjdu3e3ugzb8rO6AAAASlq3bt20cOFCt3kBAQEWVfOr9PR0nTt3Tj179lT16tWLbDNjxgxNnTq10PxBgwZp9+7d6tmzpyR57rvoLyM/P1/+/v5XvZ5q1aqVQDX4o+gBBAB4nYCAAFWrVs1tCg0NdT3vcDj05ptv6p577lG5cuXUsGFDffTRR27rWLlypRo1aqSyZcvq9ttv1969ey+73fT0dPXp00fly5dXcHCw7rvvPh0+fFiStGjRIt10002SpHr16snhcBS5zpCQkEK1z58/X8nJyVq+fLnCwsIkFR4C7tq1q4YPH67hw4crJCREYWFhGj9+vAzDuGi9P/30k/r06aPw8HCVL19e7du315o1a9za1K1bV1OmTFFsbKyCg4NdvZZfffWVunbtqnLlyik0NFTR0dE6ceKEazmn06mRI0eqUqVKqlatmiZOnOi23t8OAd9yyy0aNWqU2/NHjx5VmTJl9MUXX0iSzp49q6efflo1a9ZUUFCQOnbsqHXr1l1033BpBEAAgC1NmjRJ9913n7777jv16NFDMTExOn78uCRp//79uvfee9WrVy+lpqbqb3/7m0aPHn3J9TmdTvXp00fHjx/X559/rtWrV+vnn39W//79JUn9+/d3hauUlBQdOnRItWvXvmyd//3vfxUfH6+FCxeqZcuWl2y7ePFi+fn5KSUlRTNmzNC0adP05ptvXrR9bm6uevTooaSkJH377bfq1q2bevXqpfT0dLd2L7/8slq2bKlvv/1W48ePV2pqqu688041a9ZMycnJWr9+vXr16qWCggK3WoKCgrRhwwa9+OKLmjx5slavXl1kHTExMVq2bJlbWE1MTFSNGjXUuXNnSdLw4cOVnJysZcuW6bvvvlO/fv3UrVs3/fjjj5c9hiiC4UVmzpxpREREGAEBAUaHDh2MDRs2XLL9O++8YzRu3NgICAgwmjdvbqxYseKKtpednW1I8swUL0MT//fTU9tgYmJiusTUuHFjY9OmTUZeXt6vv/jatjWMmjWv/dS2bbF/Nw8ePNjw9fU1goKC3KbnnnvO1UaSMW7cONfj3NxcQ5Lx8ccfG4ZhGGPGjDGaNWvmtt5Ro0YZkowTJ04Uud1PP/3U8PX1NdLT013zfvjhB0OSkZKSYhiGYXz77beGJGPPnj3F2pe0tDQjODjYePbZZ4vczz59+rged+nSxWjatKnhdDrdam7atGmxtnXBjTfeaLz22muuxxEREUbfvn3d2gwYMMDo1KnTRdfRpUsX49Zbb3Wb1759e2PUqFGux5KMDz74wDAMwzhy5Ijh5+dnfPHFF67nIyMjXe337dtn+Pr6GgcPHnRb55133mmMGTOmyBry8vKMTZs2GXfddZfRtm1bIywsrNB7PDs7+1KHwqt5zTmAiYmJiouL05w5c9SxY0dNnz5d0dHR2rlzp6pWrVqo/ddff60BAwYoISFBd999t5YuXaq+fftqy5Ytat68uQV7AADXgYwM6eBBq6u4rNtvv12zZ892m1epUiW3xy1atHD9OygoSMHBwTpy5IgkKS0tTR07dnRrHxkZecltpqWlqXbt2m69es2aNVPFihWVlpam9u3bX9E+ZGdnq2/fvurSpYumTJlSrGVuvvlmORwOt5pfeeUVFRQUyNfXt1D73NxcTZw4UStWrNChQ4d0/vx5nT59ulAPYLt27dwep6amql+/fpes5bfHV5KqV6/uOr6/V6VKFd11111asmSJOnfurD179ig5OVlvvPGGJOn7779XQUGBGjVq5Lbc2bNnVbly5UvWgaJ5TQCcNm2aHnroIT3wwAOSpDlz5mjFihVasGBBkd32M2bMULdu3fTMM89IkqZMmaLVq1dr5syZmjNnzjWtHQCuG1aduH+F2w0KClKDBg0u2aZMmTJujx0Oh5xO5xWX5glOp1MDBw6Uj4+PlixZ4hbqStLTTz+t1atX6+WXX1aDBg1UtmxZ/eUvf1F+fr5bu6CgILfHZcuWvey6r/T4xsTE6IknntBrr72mpUuX6qabbnKdM5mbmytfX19t3ry5UJAtX778ZWtBYV4RAPPz87V582aNGTPGNc/Hx0dRUVFKTk4ucpnk5GTFxcW5zYuOjr7kPYnOnj2rs2fPuh7n5ORcZeUAcJ3ZtMnqCq6Jpk2bFroo5JtvvrnsMvv379f+/ftdvYDbt29XVlaWmjVrdkXbHzdunL7++mulpKSoQoUKxV5uw4YNhWpu2LBhkb1/knkhx5AhQ3TPPfdIMoNWcS52adGihZKSkjRp0qRi13Y5ffr00cMPP6xVq1Zp6dKlio2NdT3XunVrFRQU6MiRI65zAnF1vOIikMzMTBUUFCg8PNxtfnh4uDIyMopcJiMj44raS1JCQoJCQkJcU3FO3gUAXHtnz55VRkaG25SZmVns5R999FH9+OOPeuaZZ7Rz504tXbr0svfci4qK0k033aSYmBht2bJFKSkpio2NVZcuXQoNoV7KO++8o6lTp2r69OmqUKFCof3Izc296LLp6emKi4vTzp079e9//1uvvfaaRowYcdH2DRs21Pvvv6/U1FRt3bpVAwcOLFYv6JgxY7Rx40Y99thj+u6777Rjxw7Nnj37io7x7wUFBalv374aP3680tLSNGDAANdzjRo1UkxMjGJjY/X+++9rz549SklJUUJCglasWPGHt2lnXhEAr5UxY8YoOzvbNe3fv99zGzsvyfm/nwCAK7Jq1SpVr17dbbr11luLvXydOnX03nvvafny5WrZsqXmzJmj559//pLLOBwOffjhhwoNDdVtt92mqKgo1atXT4mJiVdU++zZs2UYhoYMGVJoH6pXr66XX375osvGxsbq9OnT6tChg4YNG6YRI0YUebPpC6ZNm6bQ0FDdcsst6tWrl6Kjo9WmTZvL1tioUSN9+umn2rp1qzp06KDIyEh9+OGH8vO7uoHFmJgYbd26VZ07d1adOnXcnlu4cKFiY2P1j3/8Q40bN1bfvn21cePGQu1QPA7DuMQNgq4T+fn5KleunN599123eyINHjxYWVlZ+vDDDwstU6dOHcXFxbl9Vc2ECRO0fPlybd26tVjbzcnJsexGnADgaY0bN9aSJUvUtGlTlStXzupycBldu3ZVq1atrurr5bzJqVOnlJaWprFjx+rYsWPat29foR7K7OxsBQcHW1ShtbyiB9Df319t27ZVUlKSa57T6VRSUtJFr9qKjIx0ay9Jq1evvuxVXgAAANc7r7gIRJLi4uI0ePBgtWvXTh06dND06dOVl5fnuio4NjZWNWvWVEJCgiRpxIgR6tKli1555RX17NlTy5Yt06ZNmzR37lwrdwMAAMDjvCYA9u/fX0ePHlV8fLwyMjLUqlUrrVq1ynWhR3p6unx8fu3wvOWWW7R06VKNGzdOY8eOVcOGDbV8+XLuAQgAuC7xtWi4El4TACW5vgOxKEV9MPr163fZG1kCAAB4G684BxAAUPIuXCPoBdcKwoYu3M6mtNzcu7QhAAIAinTixAlJcrsBPnC9uHC/xKu5N6E386ohYABAycnMzNS3334rHx8f+fv7u51HDZRWTqdTubm5OnDggNauXatTp05d0bep2IVX3AfQKtwHEIC3q1mzphITExUYGGh1KcAV+eyzzzR//nwZhqEKFSpo7969OnbsmFsbO98HkB5AAMBFHTx4UHfeeae6dOmismXL6vTp01aXBFyS0+lUZmamTp06JUkKCAhQQUGB8vPzLa6sdCEAAgAu6ezZs0pOTlZERIQCAwNlGAYXhqBU8/HxUfny5eVwOOR0OvXLL7/o5MmTVpdVqhAAAQCXdfLkSe3Zs0cVKlS46u97Ba6VgoICnTlzxnVBE37FpxgAUCx5eXnKy8uzugwAJYBLugAAAGyGAHgVOAcGAIDrl53/jhMArwInlAIAcP2y899x7gN4FS5cWVShQgU5HI4SXXdOTo5q166t/fv3e+U9irx9/yTv30dv3z/J+/fR2/dP8v599Pb9kzyzj4Zh6OTJk6pRo4Ztb3DORSBXwcfHR7Vq1fLoNoKDg732Qy15//5J3r+P3r5/kvfvo7fvn+T9++jt+yeV/D7a/Ysc7Bl7AQAAbIwACAAAYDO+EydOnGh1ESiar6+vunbt6rU3XfX2/ZO8fx+9ff8k799Hb98/yfv30dv3T7LHPl5rXAQCAABgMwwBAwAA2AwBEAAAwGYIgAAAADZDAAQAALAZAmApNGvWLNWtW1eBgYHq2LGjUlJSrC6pRH3xxRfq1auXatSoIYfDoeXLl1tdUolKSEhQ+/btVaFCBVWtWlV9+/bVzp07rS6rxMyePVstWrRw3ZQ1MjJSH3/8sdVleczUqVPlcDj05JNPWl1KiZk4caIcDofb1KRJE6vLKlEHDx7U/fffr8qVK6ts2bK66aabtGnTJqvLKjF169Yt9Bo6HA4NGzbM6tJKREFBgcaPH68bbrhBZcuWVf369TVlyhRbf3dvSSMAljKJiYmKi4vThAkTtGXLFrVs2VLR0dE6cuSI1aWVmLy8PLVs2VKzZs2yuhSP+PzzzzVs2DB98803Wr16tc6dO6e77rpLeXl5VpdWImrVqqWpU6dq8+bN2rRpk+644w716dNHP/zwg9WllbiNGzfqjTfeUIsWLawupcTdeOONOnTokGtav3691SWVmBMnTqhTp04qU6aMPv74Y23fvl2vvPKKQkNDrS6txGzcuNHt9Vu9erUkqV+/fhZXVjJeeOEFzZ49WzNnzlRaWppeeOEFvfjii3rttdesLs17GChVOnToYAwbNsz1uKCgwKhRo4aRkJBgYVWeI8n44IMPrC7Do44cOWJIMj7//HOrS/GY0NBQ480337S6jBJ18uRJo2HDhsbq1auNLl26GCNGjLC6pBIzYcIEo2XLllaX4TGjRo0ybr31VqvLuKZGjBhh1K9f33A6nVaXUiJ69uxpDB061G3evffea8TExFhUkfehB7AUyc/P1+bNmxUVFeWa5+Pjo6ioKCUnJ1tYGa5Gdna2JKlSpUoWV1LyCgoKtGzZMuXl5SkyMtLqckrUsGHD1LNnT7fPozf58ccfVaNGDdWrV08xMTFKT0+3uqQS89FHH6ldu3bq16+fqlatqtatW2vevHlWl+Ux+fn5evvttzV06FA5HA6ryykRt9xyi5KSkrRr1y5J0tatW7V+/Xp1797d4sq8B7fULkUyMzNVUFCg8PBwt/nh4eHasWOHRVXhajidTj355JPq1KmTmjdvbnU5Jeb7779XZGSkzpw5o/Lly+uDDz5Qs2bNrC6rxCxbtkxbtmzRxo0brS7FIzp27KhFixapcePGOnTokCZNmqTOnTtr27ZtqlChgtXlXbWff/5Zs2fPVlxcnMaOHauNGzfqiSeekL+/vwYPHmx1eSVu+fLlysrK0pAhQ6wupcSMHj1aOTk5atKkiXx9plQJBQAACmRJREFUfVVQUKDnnntOMTExVpfmNQiAgAcNGzZM27Zt86rzqySpcePGSk1NVXZ2tt59910NHjxYn3/+uVeEwP3792vEiBFavXq1AgMDrS7HI37bi9KiRQt17NhREREReuedd/Tggw9aWFnJcDqdateunZ5//nlJUuvWrbVt2zbNmTPHKwPg/Pnz1b17d9WoUcPqUkrMO++8oyVLlmjp0qW68cYb9f/bu9vYpso+DODXoeOUgRW2MdiLtHbOjvLqGJmZRDcyGrbgEokv05BQXSB8YGaAkEiWoDGyRYMGBDEsmmYkDkwE1I0Iy4BajBLmRgOaMVjdC4EBMl20zNTQ/p8P5mlSt+eJytnO6Ll+ST/svk/PrtN92NVz7p76/X5s2LABGRkZcfk31AML4Dgyffp0mEwm3LhxI2b8xo0bSEtL0ykV/VuVlZVoamqCz+fDAw88oHccTamqiuzsbABAXl4eWltbsWvXLuzbt0/nZHevra0NN2/exKJFi6Jj4XAYPp8Pe/bsQSgUgslk0jGh9qZNmwaHw4Guri69o2giPT192JsRp9OJQ4cO6ZRo9PT29qKlpQWHDx/WO4qmtmzZgldffRXPP/88AGD+/Pno7e1FbW0tC6BGuAZwHFFVFXl5eThx4kR0LBKJ4MSJE3G3viqeiQgqKytx5MgRnDx5Ena7Xe9Ioy4SiSAUCukdQxPFxcW4cOEC/H5/9LF48WKsWrUKfr8/7sofAASDQQQCAaSnp+sdRRNLliwZduulS5cuwWaz6ZRo9Hg8HsyYMQMrVqzQO4qmhoaGMGFCbEUxmUyIRCI6JYo/PAM4zmzatAlutxuLFy9Gfn4+du7cidu3b+Oll17SO5pmgsFgzJmG7u5u+P1+JCcnw2q16phMG+vXr0dDQwM+//xzWCwWXL9+HQAwdepUJCYm6pzu7m3duhWlpaWwWq347bff0NDQAK/Xi+PHj+sdTRMWi2XYes0pU6YgJSUlbtZxbt68GWVlZbDZbLh27Rpee+01mEwmvPDCC3pH08TGjRvx2GOPoaamBs899xzOnj2Luro61NXV6R1NU5FIBB6PB263GwkJ8fXvvKysDNu3b4fVasXcuXNx7tw5vPvuu6ioqNA7WvzQ+2PINNzu3bvFarWKqqqSn58vZ86c0TuSpk6dOiUAhj3cbrfe0TQx0rEBEI/Ho3c0TVRUVIjNZhNVVSU1NVWKi4ulublZ71ijKt5uA1NeXi7p6emiqqpkZmZKeXm5dHV16R1LU42NjTJv3jwxm80ye/Zsqaur0zuS5o4fPy4ApLOzU+8omvv111+lqqpKrFarTJo0SbKysqS6ulpCoZDe0eKGIsLbahMREREZCdcAEhERERkMCyARERGRwbAAEhERERkMCyARERGRwbAAEhERERkMCyARERGRwbAAEhERERkMCyARGdLQ0BCefvpp3H///VAUBYODgyOOEdHY8/l8KCsrQ0ZGBhRFwWefffaP9yEi2LFjBxwOB8xmMzIzM7F9+/ZRSHtvYgEkorhz5coVVFRUICMjA6qqwmazoaqqCgMDA9Ft6uvrcfr0aXzzzTfo7+/H1KlTRxy7G16vl0WS6F+4ffs2Fi5ciPfff/9f76OqqgoffvghduzYgYsXL+KLL75Afn6+hinvbfH15YFEZHg//vgjCgoK4HA4cODAAdjtdvzwww/YsmULvvzyS5w5cwbJyckIBAJwOp0x3+870hgRjb3S0lKUlpb+z/lQKITq6mocOHAAg4ODmDdvHt566y0UFRUBADo6OvDBBx/g+++/R05ODgDAbrePRfR7Bs8AElFcWb9+PVRVRXNzMwoLC2G1WlFaWoqWlhZcvXoV1dXVKCoqwjvvvAOfzwdFUVBUVDTiGADs3bsXDz/8MCZNmoSZM2fimWeeif6uSCSC2tpa2O12JCYmYuHChfj0008BAD09PVi6dCkAICkpCYqi4MUXXxzrl4MoLlVWVuLbb7/FwYMHcf78eTz77LMoKSnB5cuXAQCNjY3IyspCU1MT7HY7HnzwQaxZswY///yzzsnHEZ2/i5iISDMDAwOiKIrU1NSMOL927VpJSkqSW7duydq1a6WgoED6+/tlYGBABgYGho21traKyWSShoYG6enpkfb2dtm1a1d0f2+++abMnj1bjh07JoFAQDwej5jNZvF6vXLnzh05dOiQAJDOzk7p7++XwcHBsXopiOIGADly5Ej0597eXjGZTHL16tWY7YqLi2Xr1q0iIrJu3Toxm83y6KOPis/nk1OnTskjjzwiS5cuHdPs4xkvARNR3Lh8+TJEBE6nc8R5p9OJX375BeFwGJMnT4aqqkhLS4vO/3XM6/ViypQpePLJJ2GxWGCz2ZCbmwvgz0tQNTU1aGlpQUFBAQAgKysLX3/9Nfbt24fCwkIkJycDAGbMmIFp06aN5qETGcaFCxcQDofhcDhixkOhEFJSUgD8eXY+FAph//790e0++ugj5OXlobOzM3pZ2MhYAIko7oiIJvtxuVyw2WzIyspCSUkJSkpKsHLlSkyePBldXV0YGhqCy+WKec4ff/wRLYlEpL1gMAiTyYS2tjaYTKaYufvuuw8AkJ6ejoSEhJiS+N83hn19fSyAYAEkojiSnZ0NRVHQ0dGBlStXDpvv6OhAUlISUlNT/9b+LBYL2tvb4fV60dzcjG3btuH1119Ha2srgsEgAODo0aPIzMyMeZ7ZbL77gyGiEeXm5iIcDuPmzZt4/PHHR9xmyZIluHPnDgKBAB566CEAwKVLlwAANpttzLKOZ/wQCBHFjZSUFLhcLuzduxe///57zNz169fx8ccfo7y8HIqi/O19JiQkYNmyZXj77bdx/vx59PT04OTJk5gzZw7MZjP6+vqQnZ0d85g1axYAQFVVAEA4HNbuIIkMIBgMwu/3w+/3AwC6u7vh9/vR19cHh8OBVatWYfXq1Th8+DC6u7tx9uxZ1NbW4ujRowCAZcuWYdGiRaioqMC5c+fQ1taGdevWweVyDbt0bFQsgEQUV/bs2YNQKITly5fD5/PhypUrOHbsGFwu1z++EWxTUxPee+89+P1+9Pb2Yv/+/YhEIsjJyYHFYsHmzZuxceNG1NfXIxAIoL29Hbt370Z9fT2AP880KIqCpqYm/PTTT9GzhkT0/3333XfIzc2NLqfYtGkTcnNzsW3bNgCAx+PB6tWr8corryAnJwdPPfUUWltbYbVaAQATJkxAY2Mjpk+fjieeeAIrVqyA0+nEwYMHdTumcUfvT6EQEWmtp6dH3G63zJw5UyZOnCizZs2Sl19+WW7duhXdpqqqSgoLC2Oe99ex06dPS2FhoSQlJUliYqIsWLBAPvnkk+h8JBKRnTt3Sk5OjkycOFFSU1Nl+fLl8tVXX0W3eeONNyQtLU0URRG32z1ah0xE9I8oIhqtliYiIiKiewIvARMREREZDAsgERERkcGwABIREREZDAsgERERkcGwABIREREZDAsgERERkcGwABIREREZDAsgERERkcGwABIREREZDAsgERERkcGwABIREREZDAsgERERkcH8B4qwzOYjyMGfAAAAAElFTkSuQmCC", "analysis_date": 1592550893.563894, "plugin_version": "0.5.2"}, "known_vulnerabilities": {"summary": {"BackDoor_String": ["here is some data"]}, "analysis_date": 1591092565.987832, "plugin_version": "0.2", "system_version": "3.7.1_1588174612"}}
\ No newline at end of file
{"device_name": "A devices name", "device_class": "Router", "device_part": "", "vendor": "a vendor", "version": "version 42.13", "release_date": "1970-01-01", "hid": "some specs", "size": 2315412323, "number_of_included_files": 21, "included_files": [1,2,3,4,5,6,7], "total_files_in_firmware": 12}
\ No newline at end of file
TEST_DICT = {
"firmware": {
"analysis": {
"binwalk": {
"analysis_date": 1548333205.871766,
"entropy_analysis_graph": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XlclWX+//H3AWUTQc0EJBRzxVLcDatRi8JlTGtqTEnFypbRUhnNpdzHZWbMsHRy0kQrTG3RSs0y0mbKhVywTHNXTAVSY3NDOdfvj76e35xAxQQOnvv1fDzuh97Xfd33/bnOwcPbezs2Y4wRAAAALMPD1QUAAACgbBEAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQADl2oIFC2Sz2S47bdy48Zq2t2rVKo0fP750igWAG0QFVxcAAMUxceJE1alTp1B7vXr1rmk7q1at0uzZswmBACyNAAjghtC5c2e1atWqTPd58eJF2e12eXl5lel+AaC0cQoYwA3v0KFDstlsmj59ut544w3VrVtX3t7eat26tb799ltHv7i4OM2ePVuSnE4j/3YbCQkJjm3s3LlTkpSZmaknnnhCQUFB8vHxUWRkpBYuXHjZOl555RXVrl1bvr6+at++vXbs2OHol5iYKJvNpm3bthUay5QpU+Tp6amjR4+W+OsEAJdwBBDADSE7O1snTpxwarPZbLrpppsc84sWLVJubq6efvpp2Ww2/eMf/9BDDz2kAwcOqGLFinr66ad17NgxrVmzRm+//XaR+0lMTNS5c+f01FNPydvbW9WqVdPZs2fVoUMH7du3T4MGDVKdOnX03nvvKS4uTllZWRo8eLDTNt566y3l5uZq4MCBOnfunGbOnKl77rlH33//vYKCgvTwww9r4MCBSkpKUvPmzZ3WTUpKUocOHRQaGlpCrxwAFMEAQDmWmJhoJBU5eXt7G2OMOXjwoJFkbrrpJnPq1CnHuh999JGRZD755BNH28CBA01RH32XthEQEGAyMzOdliUkJBhJ5p133nG05efnm6ioKOPv729ycnKctuHr62t++uknR99NmzYZSWbo0KGOtl69epmaNWuagoICR9vWrVuNJJOYmPg7Xy0AKB5OAQO4IcyePVtr1qxxmj799FOnPj179lTVqlUd83fffbck6cCBA8Xez5/+9CfdfPPNTm2rVq1ScHCwevXq5WirWLGinn/+eeXl5emrr75y6t+jRw+nI3ht2rRR27ZttWrVKkdb3759dezYMa1du9bRlpSUJF9fX/3pT38qdr0A8HtwChjADaFNmzZXvQmkVq1aTvOXwuAvv/xS7P0Udafx4cOHVb9+fXl4OP+fOSIiwrH8f9WvX7/QNho0aKClS5c65u+77z6FhIQoKSlJ9957r+x2u9599111795dlStXLna9APB7cAQQgNvw9PQsst0YU+xt+Pr6llQ5V+Tp6anevXvrgw8+0Llz57R27VodO3ZMjz32WJnsH4C1EQABWMqlu36vRe3atbV3717Z7Xan9h9//NGx/H/t3bu30Db27Nmj8PBwp7a+ffsqJydHn3zyiZKSknTzzTcrJibmmusDgGtFAARgKZUqVZIkZWVlFXudLl26KD09XUuWLHG0Xbx4Ua+99pr8/f3Vvn17p/7Lly93eoxLSkqKNm3apM6dOzv1a9q0qZo2bap58+bpgw8+0KOPPqoKFbgyB0Dp45MGwA3h008/dRxx+1/t2rUrdG3elbRs2VKS9PzzzysmJkaenp569NFHr7jOU089pX//+9+Ki4vTli1bFB4ervfff1/ffPONEhISCl2zV69ePd1111169tlndf78eSUkJOimm27SCy+8UGjbffv21bBhwySJ078AygwBEMANYezYsUW2JyYmqkOHDsXezkMPPaTnnntOixcv1jvvvCNjzFUDoK+vr9atW6eRI0dq4cKFysnJUcOGDZWYmKi4uLhC/fv27SsPDw8lJCQoMzNTbdq00axZsxQSElKob2xsrEaMGKG6deuqTZs2xR4HAFwPm7mWq6MBAJd16NAh1alTR//85z8dR/Wu5sSJEwoJCdHYsWM1ZsyYUq4QAH7FNYAA4EILFixQQUGB+vTp4+pSAFgIp4ABwAW+/PJL7dy5U5MnT1aPHj0K3SEMAKWJAAgALjBx4kStX79ed955p1577TVXlwPAYrgGEAAAwGK4BhAAAMBiCIAAAAAWQwAEAACwGG4CuQ52u13Hjh1T5cqVf9f3iwIAgLJnjFFubq5q1qx5Td8k5E4IgNfh2LFjCgsLc3UZAADgdzhy5IhuueUWV5fhEtaMvSXkt9//CQAAbhxW/j1OALwOnPYFAODGZeXf4wRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZDAAQAALAYAiAAAIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZTwdUF4DKekuQvKU/SG26wnxutltJihTEWF68FgCv4VlKwpHRJrV1cizsiAJZX/pIC3Gg/xVGeaiktVhhjcfFaALiCYEm3uLoIN8YpYAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAItxmwD4n//8R926dVPNmjVls9m0fPnyq66zbt06tWjRQt7e3qpXr54WLFhQ+oUCAAC4mNsEwNOnTysyMlKzZ88uVv+DBw+qa9eu6tixo1JTUzVkyBA9+eST+uyzz0q5UgAAANeq4OoCSkrnzp3VuXPnYvefM2eO6tSpo5dfflmSFBERoa+//lqvvPKKYmJiSqtMAAAAl3ObI4DXasOGDYqOjnZqi4mJ0YYNG1xUEQAAQNlwmyOA1yo9PV1BQUFObUFBQcrJydHZs2fl6+tbaJ3z58/r/PnzjvmcnJxSrxMAAKCkWfYI4O8xdepUBQYGOqawsDBXlwQAAHDNLBsAg4ODlZGR4dSWkZGhgICAIo/+SdKoUaOUnZ3tmI4cOVIWpQIAAJQoy54CjoqK0qpVq5za1qxZo6ioqMuu4+3tLW9v79IuDQAAoFS5zRHAvLw8paamKjU1VdKvj3lJTU1VWlqapF+P3vXt29fR/5lnntGBAwf0wgsv6Mcff9S//vUvLV26VEOHDnVJ/QAAAGXFbQLg5s2b1bx5czVv3lySFB8fr+bNm2vs2LGSpOPHjzvCoCTVqVNHK1eu1Jo1axQZGamXX35Z8+bN4xEwAADA7bnNKeAOHTrIGHPZ5UV9y0eHDh20bdu2UqwKAACg/HGbI4AAAAAoHgIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALMatAuDs2bMVHh4uHx8ftW3bVikpKVfsn5CQoIYNG8rX11dhYWEaOnSozp07V0bVAgAAuIbbBMAlS5YoPj5e48aN09atWxUZGamYmBhlZmYW2X/RokUaOXKkxo0bp127dunNN9/UkiVLNHr06DKuHAAAoGy5TQCcMWOGBgwYoP79+6tx48aaM2eO/Pz8NH/+/CL7r1+/Xnfeead69+6t8PBw3X///erVq9dVjxoCAADc6NwiAObn52vLli2Kjo52tHl4eCg6OlobNmwocp127dppy5YtjsB34MABrVq1Sl26dLnsfs6fP6+cnBynCQAA4EZTwdUFlIQTJ06ooKBAQUFBTu1BQUH68ccfi1ynd+/eOnHihO666y4ZY3Tx4kU988wzVzwFPHXqVE2YMKFEawcAAChrbnEE8PdYt26dpkyZon/961/aunWrPvzwQ61cuVKTJk267DqjRo1Sdna2Yzpy5EgZVgwAAFAy3OIIYPXq1eXp6amMjAyn9oyMDAUHBxe5zpgxY9SnTx89+eSTkqQmTZro9OnTeuqpp/Tiiy/Kw6NwNvb29pa3t3fJDwAAAKAMucURQC8vL7Vs2VLJycmONrvdruTkZEVFRRW5zpkzZwqFPE9PT0mSMab0igUAAHAxtzgCKEnx8fHq16+fWrVqpTZt2ighIUGnT59W//79JUl9+/ZVaGiopk6dKknq1q2bZsyYoebNm6tt27bat2+fxowZo27dujmCIAAAgDtymwDYs2dP/fzzzxo7dqzS09PVrFkzrV692nFjSFpamtMRv5deekk2m00vvfSSjh49qptvvlndunXT5MmTXTUEAACAMmEznO/83XJychQYGFg6G4+XFCApR9KM0tlFme7nRqultFhhjMXFawHgCo5IukXST5LCSmkf2dnZCggIKKWtl29ucQ0gAAAAio8ACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAW4/IA2L59e7311ls6e/asq0sBAACwBJcHwObNm2vYsGEKDg7WgAEDtHHjRleXBAAA4NZcHgATEhJ07NgxJSYmKjMzU3/4wx/UuHFjTZ8+XRkZGa4uDwAAwO24PABKUoUKFfTQQw/po48+0k8//aTevXtrzJgxCgsLU48ePfTll1+6ukQAAAC3US4C4CUpKSkaN26cXn75ZdWoUUOjRo1S9erV9cc//lHDhg276vqzZ89WeHi4fHx81LZtW6WkpFyxf1ZWlgYOHKiQkBB5e3urQYMGWrVqVUkNBwAAoFyq4OoCMjMz9fbbbysxMVF79+5Vt27d9O677yomJkY2m02SFBcXp06dOmn69OmX3c6SJUsUHx+vOXPmqG3btkpISFBMTIx2796tGjVqFOqfn5+v++67TzVq1ND777+v0NBQHT58WFWqVCm1sQIAAJQHLg+At9xyi+rWravHH39ccXFxuvnmmwv1adq0qVq3bn3F7cyYMUMDBgxQ//79JUlz5szRypUrNX/+fI0cObJQ//nz5+vUqVNav369KlasKEkKDw+//gEBAACUcy4/BZycnKxdu3Zp+PDhRYY/SQoICNDatWsvu438/Hxt2bJF0dHRjjYPDw9FR0drw4YNRa7z8ccfKyoqSgMHDlRQUJBuv/12TZkyRQUFBZfdz/nz55WTk+M0AQAA3GhcHgDvvvtuSb+eCv7vf/+r//73v8rMzLymbZw4cUIFBQUKCgpyag8KClJ6enqR6xw4cEDvv/++CgoKtGrVKo0ZM0Yvv/yy/va3v112P1OnTlVgYKBjCgsLu6Y6AQAAygOXB8Dc3Fz16dNHoaGhat++vdq3b6/Q0FA99thjys7OLrX92u121ahRQ2+88YZatmypnj176sUXX9ScOXMuu86oUaOUnZ3tmI4cOVJq9QEAAJQWlwfAJ598Ups2bdKKFSuUlZWlrKwsrVixQps3b9bTTz9drG1Ur15dnp6ehZ4bmJGRoeDg4CLXCQkJUYMGDeTp6eloi4iIUHp6uvLz84tcx9vbWwEBAU4TAADAjcblAXDFihWaP3++YmJiHKEqJiZGc+fO1SeffFKsbXh5eally5ZKTk52tNntdiUnJysqKqrIde68807t27dPdrvd0bZnzx6FhITIy8vr+gYFAABQjrk8AN50000KDAws1B4YGKiqVasWezvx8fGaO3euFi5cqF27dunZZ5/V6dOnHXcF9+3bV6NGjXL0f/bZZ3Xq1CkNHjxYe/bs0cqVKzVlyhQNHDjw+gcFAABQjrn8MTAvvfSS4uPj9fbbbztO16anp2v48OEaM2ZMsbfTs2dP/fzzzxo7dqzS09PVrFkzrV692nFjSFpamjw8/n/eDQsL02effaahQ4eqadOmCg0N1eDBgzVixIiSHSAAAEA5YzPGGFcW0Lx5c+3bt0/nz59XrVq1JP0a1ry9vVW/fn2nvlu3bnVFiZeVk5NT5NHLEhEvKUBSjqQZpbOLMt3PjVZLabHCGIuL1wLAFRyRdIuknySV1jM3srOzLXs9v8uPAPbo0cPVJQAAAFiKywPguHHjXF0CAACApbg8AF6yZcsW7dq1S5J02223qXnz5i6uCAAAwD25PABmZmbq0Ucf1bp161SlShVJUlZWljp27KjFixdf9uvhAAAA8Pu4/DEwzz33nHJzc/XDDz/o1KlTOnXqlHbs2KGcnBw9//zzri4PAADA7bj8CODq1av1xRdfKCIiwtHWuHFjzZ49W/fff78LKwMAAHBPLj8CaLfbVbFixULtFStWdPqWDgAAAJQMlwfAe+65R4MHD9axY8ccbUePHtXQoUN17733urAyAAAA9+TyADhr1izl5OQoPDxcdevWVd26dVWnTh3l5OTotddec3V5AAAAbsfl1wCGhYVp69at+uKLL/Tjjz9KkiIiIhQdHe3iygAAANyTSwPghQsX1KlTJ82ZM0f33Xef7rvvPleWAwAAYAkuPQVcsWJFfffdd64sAQAAwHJcfg3gY489pjfffNPVZQAAAFiGy68BvHjxoubPn68vvvhCLVu2VKVKlZyWz5gxw0WVAQAAuCeXB8AdO3aoRYsWkqQ9e/a4uBoAAAD35/IAuHbtWleXAAAAYCkuvwbw8ccfV25ubqH206dP6/HHH3dBRQAAAO7N5QFw4cKFOnv2bKH2s2fP6q233nJBRQAAAO7NZaeAc3JyZIyRMUa5ubny8fFxLCsoKNCqVatUo0YNV5UHAADgtlwWAKtUqSKbzSabzaYGDRoUWm6z2TRhwgQXVAYAAODeXBYA165dK2OM7rnnHn3wwQeqVq2aY5mXl5dq166tmjVruqo8AAAAt+WyANi+fXtJ0sGDBxUWFiYPD5dfjggAAGAJLn8MTO3atZWVlaWUlBRlZmbKbrc7Le/bt6+LKgMAAHBPLg+An3zyiWJjY5WXl6eAgADZbDbHMpvNRgAEAAAoYS4/7/rXv/5Vjz/+uPLy8pSVlaVffvnFMZ06dcrV5QEAALgdlwfAo0eP6vnnn5efn5+rSwEAALAElwfAmJgYbd682dVlAAAAWIbLrwHs2rWrhg8frp07d6pJkyaqWLGi0/IHHnjARZUBAAC4J5cHwAEDBkiSJk6cWGiZzWZTQUFBWZcEAADg1lweAH/72BcAAACULpddA9ilSxdlZ2c75qdNm6asrCzH/MmTJ9W4cWNXlAYAAODWXBYAP/vsM50/f94xP2XKFKfHvly8eFG7d+92RWkAAABuzWUB0BhzxXkAAACUDpc/BgYAAABly2UB0GazOX3t26U2AAAAlC6X3QVsjFFcXJy8vb0lSefOndMzzzyjSpUqSZLT9YEAAAAoOS4LgP369XOaf+yxxwr16du3b1mVAwAAYBkuC4CJiYmu2jUAAIClcRMIAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAItxqwA4e/ZshYeHy8fHR23btlVKSkqx1lu8eLFsNpt69OhRyhUCAAC4ntsEwCVLlig+Pl7jxo3T1q1bFRkZqZiYGGVmZl5xvUOHDmnYsGG6++67y6hSAAAA13KbADhjxgwNGDBA/fv3V+PGjTVnzhz5+flp/vz5l12noKBAsbGxmjBhgm699dYyrBYAAMB13CIA5ufna8uWLYqOjna0eXh4KDo6Whs2bLjsehMnTlSNGjX0xBNPFGs/58+fV05OjtMEAABwo3GLAHjixAkVFBQoKCjIqT0oKEjp6elFrvP111/rzTff1Ny5c4u9n6lTpyowMNAxhYWFXVfdAAAAruAWAfBa5ebmqk+fPpo7d66qV69e7PVGjRql7Oxsx3TkyJFSrBIAAKB0VHB1ASWhevXq8vT0VEZGhlN7RkaGgoODC/Xfv3+/Dh06pG7dujna7Ha7JKlChQravXu36tatW2g9b29veXt7l3D1AAAAZcstjgB6eXmpZcuWSk5OdrTZ7XYlJycrKiqqUP9GjRrp+++/V2pqqmN64IEH1LFjR6WmpnJqFwAAuDW3OAIoSfHx8erXr59atWqlNm3aKCEhQadPn1b//v0lSX379lVoaKimTp0qHx8f3X777U7rV6lSRZIKtQMAALgbtwmAPXv21M8//6yxY8cqPT1dzZo10+rVqx03hqSlpcnDwy0OeAIAAFwXtwmAkjRo0CANGjSoyGXr1q274roLFiwo+YIAAADKIQ6JAQAAWAwBEAAAwGIIgAAAABZDAAQAALAYAiAAAIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZDAAQAALAYAiAAAIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZDAAQAALAYAiAAAIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZDAAQAALAYAiAAAIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZDAAQAALAYAiAAAIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZDAAQAALAYAiAAAIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGLcKgDOnj1b4eHh8vHxUdu2bZWSknLZvnPnztXdd9+tqlWrqmrVqoqOjr5ifwAAAHfhNgFwyZIlio+P17hx47R161ZFRkYqJiZGmZmZRfZft26devXqpbVr12rDhg0KCwvT/fffr6NHj5Zx5QAAAGXLbQLgjBkzNGDAAPXv31+NGzfWnDlz5Ofnp/nz5xfZPykpSX/5y1/UrFkzNWrUSPPmzZPdbldycnIZVw4AAFC23CIA5ufna8uWLYqOjna0eXh4KDo6Whs2bCjWNs6cOaMLFy6oWrVql+1z/vx55eTkOE0AAAA3GrcIgCdOnFBBQYGCgoKc2oOCgpSenl6sbYwYMUI1a9Z0CpG/NXXqVAUGBjqmsLCw66obAADAFdwiAF6vadOmafHixVq2bJl8fHwu22/UqFHKzs52TEeOHCnDKgEAAEpGBVcXUBKqV68uT09PZWRkOLVnZGQoODj4iutOnz5d06ZN0xdffKGmTZtesa+3t7e8vb2vu14AAABXcosjgF5eXmrZsqXTDRyXbuiIioq67Hr/+Mc/NGnSJK1evVqtWrUqi1IBAABczi2OAEpSfHy8+vXrp1atWqlNmzZKSEjQ6dOn1b9/f0lS3759FRoaqqlTp0qS/v73v2vs2LFatGiRwsPDHdcK+vv7y9/f32XjAAAAKG1uEwB79uypn3/+WWPHjlV6erqaNWum1atXO24MSUtLk4fH/z/g+frrrys/P18PP/yw03bGjRun8ePHl2XpAAAAZcptAqAkDRo0SIMGDSpy2bp165zmDx06VPoFAQAAlENucQ0gAAAAio8ACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALKaCqwsAAJRv/v7+CgkJkYcHxwxQdi5IOvN/fza8hvXsdruOHz+uvLy80inMTRAAAQBFstlsGj16tB588EFXlwILOvV/kyQl/Y71ly1bpilTpsgYU4JVuQ8CIACgSKNHj1aPHj0UGhoqf39/jgDihmC325WXl6cePXpIkiZPnuziisonAiAAoJDKlSvrwQcfVGhoqIKDg11dDnBN/P39JUkPPvigFi5cqJ9++snFFZU//HcOAFDIpdB36RcpcKO59LPbvHlz1ahRw8XVlD8EQABAIZdO93LaFzeqSz+7xhjVrFmT/8z8Bv+yAQCA28rPz5enp6e8vb1dXUq5QgAEAFjOunXrZLPZlJWV5epSCjl06JBsNptSU1Mv22fBggWqUqVKGVbl2v2WBJvN5uoSyhUCIADAbVwKdpebOnbsKElq166djh8/rsDAQBdX/Pv07NlTe/bscXUZxRIeHq6EhARXl4Hf4C5gAIDbuBTsfuvjjz/WM888o7/85S+SJC8vL5fc3Zyfny8vL6/r3o6vr698fX1LoCJYFUcAAQBu41JneKuIAAAgAElEQVSw+9/pl19+0bBhwzR69Gg98sgjkgqfAr50anP58uWqX7++fHx8FBMToyNHjlxxfyNGjFCDBg3k5+enW2+9VWPGjNGFCxccy8ePH69mzZpp3rx5qlOnjnx8fCT9+qy6f/zjH6pXr568vb1Vq1atQs+rO3DggDp27Cg/Pz9FRkZqw4YNjmX/eyp2z549stls+vHHH53Wf+WVV1S3bl3H/I4dO9S5c2f5+/srKChIffr00YkTJ644vgULFqhWrVry8/PTgw8+qJMnTzot379/v7p3766goCD5+/urdevW+uKLLxzLO3TooMOHD2vo0KGOo7CSdPLkSfXq1UuhoaHy8/NTkyZN9O67716xFpQsAiAAwG1lZWWpe/fu6tChgyZNmnTFvmfOnNHkyZP11ltv6ZtvvlFWVpYeffTRK65TuXJlLViwQDt37tTMmTM1d+5cvfLKK0599u3bpw8++EAffvih47q+UaNGadq0aRozZox27typRYsWKSgoyGm9F198UcOGDVNqaqoaNGigXr166eLFi4VqaNCggVq1aqWkJOfvy0hKSlLv3r0dr8M999yj5s2ba/PmzVq9erUyMjL05z//+bJj27Rpk5544gkNGjRIqamp6tixo/72t7859cnLy1OXLl2UnJysbdu2qVOnTurWrZvS0tIkSR9++KFuueUWTZw4UcePH3ccnT137pxatmyplStXaseOHXrqqafUp08fpaSkXPH1RsnhFDAAoNhavdFK6XnpZb7fYP9gbX5q8zWtY7fb1bt3b1WoUEFJSUlXvQngwoULmjVrltq2bStJWrhwoSIiIpSSkqI2bdoUuc5LL73k+Ht4eLiGDRumxYsX64UXXnC05+fn66233tLNN98sScrNzdXMmTM1a9Ys9evXT5JUt25d3XXXXU7bHjZsmLp27SpJmjBhgm677Tbt27dPjRo1KlRHbGysZs2a5Qi5e/bs0ZYtW/TOO+9IkmbNmqXmzZtrypQpjnXmz5+vsLAw7dmzRw0aNCi0zZkzZ6pTp06OsTRo0EDr16/X6tWrHX0iIyMVGRnpmJ80aZKWLVumjz/+WIMGDVK1atXk6empypUrO51yDw0N1bBhwxzzzz33nD777DMtXbr0sq81ShYBEABQbOl56Tqae9TVZRTL6NGjtWHDBqWkpKhy5cpX7V+hQgW1bt3aMd+oUSNVqVJFu3btumwoWbJkiV599VXt379feXl5unjxogICApz61K5d2xH+JGnXrl06f/687r333ivW07RpU8ffQ0JCJEmZmZlFBsBHH31Uw4YN08aNG3XHHXcoKSlJLVq0cPTdvn271q5dW+Sz8Pbv319kANy1a1eh74GOiopyCoB5eXkaP368Vq5cqePHj+vixYs6e/as4wjg5RQUFGjKlClaunSpjh49qvz8fJ0/f15+fn5XXA8lhwAIACi2YH/XfC3cte538eLFmj59ulauXKn69euXSk0bNmxQbGysJkyYoJiYGAUGBmrx4sV6+eWXnfpVqlTJab64N29UrFjR8fdLRy/tdnuRfYODg3XPPfdo0aJFuuOOO7Ro0SI9++yzjuV5eXnq1q2b/v73vxda91K4/D2GDRumNWvWaPr06apXr558fX318MMPKz8//4rr/fOf/9TMmTOVkJCgJk2aqFKlShoyZMhV10PJIQACAIrtWk/DukJqaqqeeOIJTZs2TTExMcVe7+LFi9q8ebPjaN/u3buVlZWliIiIIvuvX79etWvX1osvvuhoO3z48FX3U79+ffn6+io5OVlPPvlkseu7mtjYWL3wwgvq1auXDhw44HT9YosWLfTBBx8oPDxcFSoU71d/RESENm3a5NS2ceNGp/lvvvlGcXFxjiOFeXl5OnTokFMfLy8vFRQUFFqve/fueuyxxyT9Gmz37Nmjxo0bF6s2XD9uAgEAuI0TJ06oR48e6tChgx577DGlp6c7TT///PNl161YsaKee+45bdq0SVu2bFFcXJzuuOOOy57+rV+/vtLS0rR48WLt379fr776qpYtW3bVGn18fDRixAi98MILeuutt7R//35t3LhRb7755u8etyQ99NBDys3N1bPPPquOHTuqZs2ajmUDBw7UqVOn1KtXL3377bfav3+/PvvsM/Xv379QOLvk+eef1+rVqzV9+nTt3btXs2bNcjr9e+k1uHRzy/bt29W7d+9CRynDw8P1n//8R0ePHnXcdVy/fn2tWbNG69ev165du/T0008rIyPjusaPa0MABAC4jZUrV+rw4cNatWqVQkJCCk3/e43fb/n5+WnEiBHq3bu37rzzTvn7+2vJkiWX7f/AAw9o6NChGjRokJo1a6b169drzJgxxapzzJgx+utf/6qxY8cqIiJCPXv2VGZm5jWP939VrlxZ3bp10/bt2xUbG+u0rGbNmvrmm29UUFCg+++/X02aNNGQIUNUpUqVy37f8x133KG5c+dq5syZioyM1Oeff+5004skzZgxQ1WrVlW7du3UrVs3xcTEqEWLFk59Jk6cqEOHDqlu3bqOayFfeukltWjRQjExMerQoYOCg4PVo0eP6xo/ro3NGGNcXcSNKicnp/SeIh8vKUBSjqQZpbOLMt3PjVZLabHCGIuL16Jca9iwoZKSkhQREWGJC/MXLFigIUOGlMuvhsPvc+bMGe3atUujR4/WyZMndfjw4ULPPczOzi50045VcAQQAADAYgiAAAAAFkMABABYXlxcHKd/YSkEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAohnXr1slms13342LeeOMNhYWFycPDQwkJCb97O3FxceX269PGjx+vZs2aXbFPhw4dNGTIkDKqCL9FAAQAuJW4uDjZbLZCU6dOnVxdmnJycjRo0CCNGDFCR48e1VNPPVWoz+XqvzQtXLhQkjRz5kwtWLCgjEdQcj788ENNmjTJ1WVYVgVXFwAAQEnr1KmTEhMTndq8vb1dVM3/l5aWpgsXLqhr164KCQkpss/MmTM1bdq0Qu19+vTRvn371LVrV0kqve+iv4r8/Hx5eXld93aqVatWAtXg9+IIIADA7Xh7eys4ONhpqlq1qmO5zWbTvHnz9OCDD8rPz0/169fXxx9/7LSNVatWqUGDBvL19VXHjh116NChq+43LS1N3bt3l7+/vwICAvTnP/9ZGRkZkqQFCxaoSZMmkqRbb71VNputyG0GBgYWqv3NN9/Uhg0btHz5clWvXl1S4VPAHTp00KBBgzRo0CAFBgaqevXqGjNmjIwxl613//796t69u4KCguTv76/WrVvriy++cOoTHh6uSZMmqW/fvgoICHActfzpp5/Uq1cvVatWTZUqVVKrVq20adMmp3XffvtthYeHKzAwUI8++qhyc3Od6r10Cnj06NFq27ZtofoiIyM1ceJEx/y8efMUEREhHx8fNWrUSP/6178uOzZcGQEQAGBJEyZM0J///Gd999136tKli2JjY3Xq1ClJ0pEjR/TQQw+pW7duSk1N1ZNPPqmRI0decXt2u13du3fXqVOn9NVXX2nNmjU6cOCAevbsKUnq2bOnI1ylpKTo+PHjCgsLu2qdK1as0NixY5WYmKjIyMgr9l24cKEqVKiglJQUzZw5UzNmzNC8efMu2z8vL09dunRRcnKytm3bpk6dOqlbt25KS0tz6jd9+nRFRkZq27ZtGjNmjPLy8tS+fXsdPXpUH3/8sbZv364XXnhBdrvdsc7+/fu1fPlyrVixQitWrNBXX31V5JFNSYqNjVVKSor279/vaPvhhx/03XffqXfv3pKkpKQkjR07VpMnT9auXbs0ZcoUjRkzxnFKHNfIuJFZs2aZ2rVrG29vb9OmTRuzadOmK/ZfunSpadiwofH29ja33367Wbly5TXtLzs720gqnSleRuP/78/S2kdZ7udGq4Ux8lpYfGrYsKHZvHmzOX36tPMHX8uWxoSGlv3UsmWxP5v79etnPD09TaVKlZymyZMnO/pIMi+99JJjPi8vz0gyn376qTHGmFGjRpnGjRs7bXfEiBFGkvnll1+K3O/nn39uPD09TVpamqPthx9+MJJMSkqKMcaYbdu2GUnm4MGDxRrLrl27TEBAgHnxxReLHGf37t0d8+3btzcRERHGbrc71RwREVGsfV1y2223mddee80xX7t2bdOjRw+nPv/+979N5cqVzcmTJ4vcxrhx44yfn5/JyclxtA0fPty0bdvWqd7Bgwc75iMjI83EiRMd86NGjXLqX7duXbNo0SKn/UyaNMlERUUVWcPp06fN5s2bzf33329atmxpqlevXujnPDs7+0ovhVtzm2sAlyxZovj4eM2ZM0dt27ZVQkKCYmJitHv3btWoUaNQ//Xr16tXr16aOnWq/vjHP2rRokXq0aOHtm7dqttvv90FIwCAG0B6unT0qKuruKqOHTvq9ddfd2r77TVnTZs2dfy9UqVKCggIUGZmpiRp165dhU5JRkVFXXGfu3btUlhYmNNRvcaNG6tKlSratWuXWrdufU1jyM7OVo8ePdS+ffti3yxxxx13yGazOdX88ssvq6CgQJ6enoX65+Xlafz48Vq5cqWOHz+uixcv6uzZs4WOALZq1cppPjU1Vc2bN7/idXzh4eGqXLmyYz4kJMTx+hYlNjZW8+fPd5y2fvfddxUfHy9JOn36tPbv368nnnhCAwYMcKxz8eJFl10LeaNzmwA4Y8YMDRgwQP3795ckzZkzRytXrtT8+fOLPGw/c+ZMderUScOHD5ckTZo0SWvWrNGsWbM0Z86cMq0dAG4YwcE3xH4rVaqkevXqXbFPxYoVneZtNpvTKUxXstvt6t27tzw8PJSUlOQU6krSsGHDtGbNGk2fPl316tWTr6+vHn74YeXn5zv1q1SpktO8r6/vVbd9ra9vr169NGLECG3dulVnz57VkSNHHKfP8/LyJElz584tFMyLCra4OrcIgPn5+dqyZYtGjRrlaPPw8FB0dLQ2bNhQ5DobNmxw/M/ikpiYGC1fvvyy+zl//rzOnz/vmM/JybnOygHgBrN5s6srKBMRERGFbgrZuHHjVdc5cuSIjhw54jgKuHPnTmVlZalx48bXtP+XXnpJ69evV0pKitNRtKv57U0YGzduVP369S8bkr755hvFxcXpwQcflPRr0CrOzS5NmzbVvHnzdOrUqRK7m/eWW25R+/btlZSUpLNnz+q+++5znMELCgpSzZo1deDAAcXGxpbI/qzOLW4COXHihAoKChQUFOTUHhQUpPT09CLXSU9Pv6b+kjR16lQFBgY6puJcvAsAKHvnz59Xenq603TixIlir//MM89o7969Gj58uHbv3q1FixZd9Zl70dHRatKkiWJjY7V161alpKSob9++at++faFTqFeydOlSTZs2TQkJCapcuXKhcVw6GlaUtLQ0xcfHa/fu3Xr33Xf12muvafDgwZftX79+fX344YdKTU3V9u3b1bt372IdBe3Vq5eCg4PVo0cPffPNNzpw4IA++OCDyx50Ka7Y2FgtXrxY7733XqGgN2HCBE2dOlWvvvqq9uzZo++//16JiYmaMWPGde3TqtwiAJaVUaNGKTs72zEdOXKk9HaWJynn//4sTWW1n+IoT7WUFiuMsbh4LVCKVq9erZCQEKfprrvuKvb6tWrV0gcffKDly5crMjJSc+bM0ZQpU664js1m00cffaSqVavqD3/4g6Kjo3XrrbdqyZIl11T766+/LmOM4uLiCo0hJCRE06dPv+y6ffv21dmzZ9WmTRsNHDhQgwcPLvJh05fMmDFDVatWVbt27dStWzfFxMSoRYsWV63Ry8tLn3/+uWrUqKEuXbqoSZMmmjZt2nWfjn344Yd18uRJnTlzptC3nDz55JOaN2+eEhMT1aRJE7Vv314LFixQnTp1rmufVmUz5goPCLpB5Ofny8/PT++//77TD0y/fv2UlZWljz76qNA6tWrVUnx8vNPX0IwbN07Lly/X9u3bi7XfnJwcLj4F4JYaNmyopKQkRUREyM/Pz9XloBg6dOigZs2aXdfXy7mTM2fOaNeuXRo9erROnjypw4cPFzoKnJ2drYCAABdV6FpucQTQy8tLLVu2VHJysqPNbrcrOTn5sndtRUVFOfWXpDVr1lz1Li8AAIAbnVvcBCJJ8fHx6tevn1q1aqU2bdooISFBp0+fdtwV3LdvX4WGhmrq1KmSpMGDB6t9+/Z6+eWX1bVrVy1evFibN2/WG2+84cphAAAAlDq3CYA9e/bUzz//rLFjxyo9PV3NmjXT6tWrHTd6pKWlycPj/x/wbNeunRYtWqSXXnpJo0ePVv369bV8+XKeAQgAuCGtW7fO1SXgBuI2AVCS4zsQi1LUP4xHHnlEjzzySClXBQAAUL64xTWAAICSdelRIOXlwcjAteJn+MoIgACAQi49E/VKz5wDyrNLP7vX8vxHK3GrU8AAgJKRm5urZcuWOR6t5e/v73QdNVBe2e125eXl6aefftLatWt15syZa/o2FasgAAIAinTpwceXviYMuJGsXbtWb775pmPeDR57XKLc4kHQrsKDoAFYQVBQkFq3bi3p1wfvA+WZ3W7XiRMndObMGUmSt7e3PD09tX//fuXm5jr1tfKDoDkCCAC4ooyMDKWkpCg0NFSenp5cVI9yz8PDQ/7+/rLZbLLb7Tp27Fih8Gd1BEAAwFVlZmbqwoUL8vHxue7vewXKSkFBgc6dO6dffvnF1aWUOwRAAECx8EsUcB/c0gUAAGAxBMDrwP0zAADcuKz8e5wAeB24oBQAgBuXlX+P8xiY63DpzqLKlSvLZrOV6LZzcnIUFhamI0eOuPUt6lYZp8RY3RVjdU+M1T1dGmtaWppsNptq1qxp2QeccxPIdfDw8NAtt9xSqvsICAhw+3+QknXGKTFWd8VY3RNjdU+BgYGWGevlWDP2AgAAWBgBEAAAwGI8x48fP97VRaBonp6e6tChgypUcO8z9VYZp8RY3RVjdU+M1T1ZaaxXwk0gAAAAFsMpYAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAsh2bPnq3w8HD5+Piobdu2SklJcXVJ1+w///mPunXrppo1a8pms2n58uVOy40xGjt2rEJCQuTr66vo6Gjt3bvXqc+pU6cUGxurgIAAValSRU888YTy8vLKchhXNXXqVLVu3VqVK1dWjRo11KNHD+3evdupz7lz5zRw4EDddNNN8vf315/+9CdlZGQ49UlLS1PXrl3l5+enGjVqaPjw4bp48WJZDuWqXn/9dTVt2tTxsNioqCh9+umnjuXuMs6iTJs2TTabTUOGDHG0uct4x48fL5vN5jQ1atTIsdxdxnnJ0aNH9dhjj+mmm26Sr6+vmjRpos2bNzuWu8tnU3h4eKH31WazaeDAgZLc630tKCjQmDFjVKdOHfn6+qpu3bqaNGmS0/f8usv7WqIMypXFixcbLy8vM3/+fPPDDz+YAQMGmCpVqpiMjAxXl3ZNVq1aZV588UXz4YcfGklm2bJlTsunTZtmAgMDzfLly8327dvNAw88YOrUqWPOnj3r6NOpUycTGRlpNm7caP773/+aevXqmV69epX1UK4oJibGJCYmmh07dpjU1FTTpUsXU6tWLZOXl+fo88wzz5iwsDCTnJxsNm/ebO644w7Trl07x/KLFy+a22+/3URHR5tt27aZVatWmerVq5tRo0a5YkiX9fHHH5uVK1eaPXv2mN27d5vRo0ebihUrmh07dhhj3Gecv5WSkmLCw8NN06ZNzeDBgx3t7jLecePGmdtuu80cP37cMf3888+O5e4yTmOMOXXqlKldu7aJi4szmzZtMgcOHDCfffaZ2bdvn6OPu3w2ZWZmOr2na9asMZLM2rVrjTHu9b5OnjzZ3HTTTWbFihXm4MGD5r333jP+/v5m5syZjj7u8r6WJAJgOdOmTRszcOBAx3xBQYGpWbOmmTp1qguruj6/DYB2u90EBwebf/7zn462rKws4+3tbd59911jjDE7d+40ksy3337r6PPpp58am81mjh49WnbFX6PMzEwjyXz11VfGmF/HVbFiRfPee+85+uzatctIMhs2bDDG/BqWPTw8THp6uqPP66+/bgICAsz58+fLdgDXqGrVqmbevHluO87c3FxTv359s2bNGtO+fXtHAHSn8Y4bN85ERkYWucydxmmMMSNGjDB33XXXZZe782fT4MGDTd26dY3dbne797Vr167m8ccfd2p76KGHTGxsrDHGvd/X68Ep4HIkPz9fW7ZsUXR0tKPNw8ND0dHR2rBhgwsrK1kHDx5Uenq60zgDAwPVtm1bxzg3bNigKlWqqFWrVo4+0dHR8vDw0KZNm8q85uLKzs6WJFWrVk2StGXLFl24cMFprI0aNVKtWrWcxtqkSRMFBQU5+sTExCgnJ0c//PBDGVZffAUFBVq8eLFOnz6tqKgotx3nwIED1bVrV6dxSe73vu7du1c1a9bUrbfeqtjYWKWlpUlyv3F+/PHHatWqlR555BHVqFFDzZs319y5cx3L3fWzKT8/X++8844ef/xx2Ww2t3tf27Vrp+TkZO3Zs0eStH37dn399dfq3LmzJPd9X6+XtR+DXc6cOHFCBQUFTv/gJCkoKEg//viji6oqeenp6ZJU5DgvLUtPT1eNGjWclleoUEHVqlVz9Clv7Ha7hgwZojvvvFO33367pF/H4eXlpSpVqjj1/e1Yi3otLi0rT77//ntFRUXp3Llz8vf317Jly9S4cWOlpqa61TglafHixdq6dau+/fbbQsvc6X1t27atFixYoIYNG+r48eOaMGGC7r77bu3YscOtxilJBw4c0Ouvv674+HiNHj1a3377rZ5//nl5eXmpX79+bvvZtHz5cmVlZSkuLk6Se/38StLIkSOVk5OjRo0aydPTUwUFBZo8ebJiY2Mlue/vnOtFAARKyMCBA7Vjxw59/fXXri6l1DRs2FCpqanKzs7W+++/r379+umrr75ydVkl7siRIxo8eLDWrFkjHx8fV5dTqi4dJZGkpk2bqm3btqpdu7aWLl0qX19fF1ZW8ux2u1q1aqUpU6ZIkpo3b64dO3Zozpw56tevn4urKz1vvvmmOnfurJo1a7q6lFKxdOlSJSUladGiRbrtttuUmpqqIUOGqGbNmm79vl4vTgGXI9WrV5enp2ehO7EyMjIUHBzsoqpK3qWxXGmcwcHByszMdFp+8eJFnTp1qly+FoMGDdKKFSu0du1a3XLLLY724OBg5efnKysry6n/b8da1GtxaVl54uXlpXr16qlly5aaOnWqIiMjNXPmTLcb55YtW5SZmakWLVqoQoUKqlChgr766iu9+uqrqlChgoKCgtxqvP+rSpUqatCggfbt2+d272tISIgaN27s1BYREeE45e2On02HDx/WF198oSeffNLR5m7v6/DhwzVy5Eg9+uijatKkifr06aOhQ4dq6tSpktzzfS0JBMByxMvLSy1btlRycrKjzW63Kzk5WVFRUS6srGTVqVNHwcHBTuPMycnRpk2bHOOMiopSVlaWtmzZ4ujz5Zdfym63q23btmVe8+UYYzRo0CAtW7ZMX375perUqeO0vGXLlqpYsaLTWHfv3q20tDSnsX7//fdOHz5r1qxRQEBAoV9W5Y3dbtf58+fdbpz33nuvvv/+e6WmpjqmVq1aKTY21vF3dxrv/8rLy9P+/fsVEhLidu/rnXfeWegxTXv27FHt2rUluddn0yWJiYmqUaOGunbt6mhzt/f1zJkz8vBwjjOenp6y2+2S3PN9LRGuvgsFzhYvXmy8vb3NggULzM6dO81TTz1lqlSp4nQn1o0gNzfXbNu2zWzbts1IMjNmzDDbtm0zhw8fNsb8ekt+lSpVzEcffWS+++4707179yJvyW/evLnZtGmT+frrr039+vXL3S35zz77rAkMDDTr1q1zeuTCmTNnHH2eeeYZU6tWLfPll1+azZs3m6ioKBMVFeVYfulxC/fff79JTU01q1evNjfffHO5e9zCyJEjzVdffWUOHjxovvvuOzNy5Ehjs9nM559/boxxn3Fezv/eBWyM+4z3r3/9q1m3bp05ePCg+eabb0x0dLSpXr26yczMNMa4zziN+fWRPhUqVDCTJ082e/fuNUlJScbPz8+88847jj7u8tlkzK9PkahVq5YZMWJEoWXu9L7269fPhIaGOh4D8+GHH5rq1aubF154wdHHnd7XkkIALIdee+01U6tWLePl5WXatGljNm7c6OqSrtnatWuNpEJTv379jDG/3pY/ZswYExQUZLy9vc29995rdu/e7bSNkydPml69ehl/f38TEBBg+vfvb3Jzc10wmssraoySTGJioqPP2bNnzV/+8hdTtWpV4+fnZx588EFz/Phxp+0cOnTIdO7c2fj6+prq1aubv/71r+bChQtlPJore/zxx03t2rWNl5eXufnmm829997rCH/GuM84L+e3AdBdxtuzZ08TEhJivLy8TGhoqOnZs6fTc/HcZZyXfPLJJ+b222833t7eplGjRuaNN95wWu4un03GGPPZZ58ZSYXqN8a93tecnBwzePBgU6tWLePj42NuvfVW8+KLLzo9rsad3teSYjPmfx6VDQAAALfHNYAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARDA/2vvbkKi+uIwjn8HZERtxjfMoUEGR02uugnaKJoYDY7SRoxaFAotXIkRFNhCSXxDN25CplZKiQjmSgWlYnypFkmLUAYdFcmFs3EyEMPA6b8bmL8ujJRi7vOBu/mdew/nt3s43HOvKR0cHFBfX4/dbsdisbC3t3diTUQkHikAikjc2d7e5v79+1y6dAmr1YrL5eLBgwfs7u5G7xkeHmZhYYEPHz6ws7NDamrqibU/4ff7FSRF5J+kACgicWVzc5OrV/kFy8kAAAOQSURBVK8SDAYZHR1lfX0dn8/H27dvKS0tJRwOA7CxsYFhGJSUlOBwOLBYLCfWRETikX4FJyJxpaamhuXlZdbW1khKSorWQ6EQeXl5NDQ0EAgEmJubi45VVlYCHKv5/X4GBwcZGBhge3ub1NRUKioqGB8fByASidDX18eLFy8IhUJcvnyZtrY2bt26xdbWFrm5uTFra2xsZGho6By7FxE5nYS/vQARkbMSDoeZmZmhu7s7JvwBOBwO7t69y9jYGMFgkCdPnrC8vMzExARWqxWA1tbWmNrS0hItLS28fPmSsrIywuEwCwsL0Tl7e3t59eoVPp+PgoIC5ufnuXfvHllZWZSXl/P69Wvq6+tZXV3FbrcfW5OIyN+iACgicSMYDPLr1y8Mwzhx3DAMvn37xtHREcnJyVitVhwOR3T8/zW/309KSgo3b97EZrPhcrm4cuUKAIeHh/T09PDmzRtKS0sBcLvdLC4u8vz5cyorK8nIyADg4sWLpKWlnWfrIiK/RQFQROLOWb3Z4vF4cLlcuN1uvF4vXq+Xuro6kpOTWV9f5+DgAI/HE/PMz58/oyFRRORfpQAoInEjPz8fi8VCIBCgrq7u2HggECA9PZ2srKxTzWez2fj8+TN+v5/Z2Vna29t5+vQpnz59Yn9/H4CpqSmcTmfMc4mJiX/ejIjIOdIpYBGJG5mZmXg8HgYHB/nx40fMWCgUYmRkhDt37vzW6d6EhARu3LhBf38/X758YWtri3fv3lFUVERiYiJfv34lPz8/5srJyQGIvlt4dHR0dk2KiJwB7QCKSFx59uwZZWVlVFdX09XVRW5uLisrKzx+/Bin00l3d/ep55qcnGRzc5Nr166Rnp7O9PQ0kUiEwsJCbDYbjx494uHDh0QiEcrLy/n+/Tvv37/HbrfT2NiIy+XCYrEwOTlJbW0tSUlJXLhw4Ry7FxE5He0AikhcKSgoYGlpCbfbze3bt8nLy6OpqYmqqio+fvwYPZhxGmlpaUxMTHD9+nUMw8Dn8zE6OkpxcTEAnZ2dtLW10dvbi2EYeL1epqamop9/cTqddHR00NraSnZ2Ns3NzefSs4jI79J3AEVERERMRjuAIiIiIiajACgiIiJiMgqAIiIiIiajACgiIiJiMgqAIiIiIiajACgiIiJiMgqAIiIiIiajACgiIiJiMgqAIiIiIiajACgiIiJiMgqAIiIiIiajACgiIiJiMv8B1GY63YW86TwAAAAASUVORK5CYII=",
"plugin_version": "0.5.2",
"signature_analysis": "\nDECIMAL HEXADECIMAL DESCRIPTION\n--------------------------------------------------------------------------------\n0 0x0 Zip archive data, at least v2.0 to extract, name: get_files_test/\n45 0x2D Zip archive data, at least v2.0 to extract, name: get_files_test/generic folder/\n105 0x69 Zip archive data, at least v1.0 to extract, compressed size: 20, uncompressed size: 20, name: get_files_test/generic folder/test file 3_.txt\n201 0xC9 Zip archive data, at least v2.0 to extract, compressed size: 59, uncompressed size: 62, name: get_files_test/testfile1\n314 0x13A Zip archive data, at least v1.0 to extract, compressed size: 28, uncompressed size: 28, name: get_files_test/testfile2\n765 0x2FD End of Zip archive, footer length: 22\n\n",
"summary": {
"End of Zip archive": [
"418a54d78550e8584291c96e5d6168133621f352bfc1d43cf84e81187fef4962_787"
],
"Zip archive data": [
"418a54d78550e8584291c96e5d6168133621f352bfc1d43cf84e81187fef4962_787"
]
}
},
"file_hashes": {
"analysis_date": 1548333208.4131176,
"imphash": None,
"md5": "743692a4121ff9f0c492c14a8371a32e",
"plugin_version": "1.0",
"ripemd160": "6cb1094fd083fe21c5ebba5426e3863f77f85d11",
"sha1": "105bc9f473fa46553bc256521b9b0c5e29213d69",
"sha256": "418a54d78550e8584291c96e5d6168133621f352bfc1d43cf84e81187fef4962",
"sha512": "bf9fa25242fecaa8e2b58d01758e5d7d9779487594cbb43ec9665d1df5ae967faabc625764715296bb663a88e6c01cca3b862c33e9d093df79e595b47fa68255",
"ssdeep": "12:5DJhWmNJAx9DV1JzAkVTDL4EZFJhudt6JA1uL33k9S/OgRI:ThWm7Ax9DVLAe4EZhueAk3k9SWf",
"summary": None,
"whirlpool": "fdb19c4ed557ce8c1e5d7972008c9e83a5c82501a1057f9dbae083762a653b264e0ddeec25a6933f00fe7273e80bf8066904425119a544ea2161ef8ec9c3ecc0"
},
"file_type": {
"analysis_date": 1548333203.6747785,
"full": "Zip archive data, at least v2.0 to extract",
"mime": "application/zip",
"plugin_version": "1.0",
"summary": {
"application/zip": [
"418a54d78550e8584291c96e5d6168133621f352bfc1d43cf84e81187fef4962_787"
],
"text/plain": [
"d558c9339cb967341d701e3184f863d3928973fccdc1d96042583730b5c7b76a_62",
"faa11db49f32a90b51dfc3f0254f9fd7a7b46d0b570abd47e1943b86d554447a_28",
"289b5a050a83837f192d7129e4c4e02570b94b4924e50159fad5ed1067cfbfeb_20"
]
}
},
"known_vulnerabilities": {
"analysis_date": 1548333209.475375,
"plugin_version": "0.2",
"summary": {},
"system_version": "3.7.1_1548244221"
},
"malware_scanner": {
"analysis_date": 1548333207.3892179,
"md5": "743692a4121ff9f0c492c14a8371a32e",
"number_of_scanners": 1,
"plugin_version": "0.3.1",
"positives": 0,
"scanners": [
"ClamAV"
],
"scans": {
"ClamAV": {
"detected": False,
"result": "clean",
"version": "ClamAV 0.100.2/25326/Thu Jan 24 03:30:43 2019\n"
}
},
"summary": {},
"system_version": "0.2.6"
},
"printable_strings": {
"analysis_date": 1548333208.388212,
"plugin_version": "0.3.4",
"skipped": "blacklisted file type",
"summary": {}
},
"file_type": {"mime": "application/x-tar", "full": "POSIX tar archive (GNU)",
"summary": {"application/font-sfnt": [324], "application/gzip": ["well, that's compressed!"],
"application/octet-stream": [42], "application/pdf": ["nice document here"],
"application/x-archive": [42, 42, 42], "application/x-cpio": [13],
"application/x-executable": [123, 21],
"application/x-object": [1, 23, 56, 78, 3, 23, 67, 34, 1309, 35, 5454],
"application/x-sharedlib": [1, 2, 3, 4, 5], "application/x-tex-tfm": [42],
"audio/mpeg": ["nice song there."],
"compression/zlib": [1, 3, 5, 6, 3, 6, 4, 2, 5, 4, 21, 5, 7, 9, 5, 3],
"data/raw": ["hi there.", 1, 2, 3, 4, 5, 6, "wanna have some raw data?"],
"filesystem/dosmbr": [1, 2, 3, 44, 56, 67, 2],
"filesystem/squashfs": [1, 2, 3, 4, 5, 4, 5, 32, 6, 7, 89, 3],
"image/gif": [1, 2, 3, 4, 5, 6, 7, "gif time"], "image/png": ["boom. an image"],
"linux/avm-kernel-image-v1": ["some kernel data"],
"text/plain": [1, 2, 3, 4, 5, 6, "there was data"],
"video/mp4": ["there was a video"]}, "analysis_date": 1591092558.1460986,
"plugin_version": "1.0"},
"crypto_material": {"summary": {"SSLCertificate": ["nothing to see here"]},
"analysis_date": 1591092560.042629, "plugin_version": "0.5.2",
"system_version": "3.7.1_1588174612"},
"software_components": {
"analysis_date": 1548333204.2639465,
"plugin_version": "0.3.2",
"summary": {
"Test Software 1.2.3": [
"d558c9339cb967341d701e3184f863d3928973fccdc1d96042583730b5c7b76a_62"
]
},
"system_version": "3.7.1_1548244221"
},
"unpacker": {
"analysis_date": 1548333203.557019,
"entropy": 0.5789618884873324,
"number_of_unpacked_files": 3,
"output": "\n7-Zip [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21\np7zip Version 16.02 (locale=en_US.UTF-8,Utf16=on,HugeFiles=on,64 bits,8 CPUs x64)\n\nScanning the drive for archives:\n1 file, 787 bytes (1 KiB)\n\nExtracting archive: /media/data/fact_fw_data/41/418a54d78550e8584291c96e5d6168133621f352bfc1d43cf84e81187fef4962_787\n--\nPath = /media/data/fact_fw_data/41/418a54d78550e8584291c96e5d6168133621f352bfc1d43cf84e81187fef4962_787\nType = zip\nPhysical Size = 787\n\nEverything is Ok\n\nFolders: 2\nFiles: 3\nSize: 110\nCompressed: 787\n",
"plugin_used": "7z",
"plugin_version": "0.7",
"size packed -> unpacked": "459.00 Byte -> 110.00 Byte",
"summary": {
"data lost": [
"418a54d78550e8584291c96e5d6168133621f352bfc1d43cf84e81187fef4962_787"
],
"unpacked": [
"d558c9339cb967341d701e3184f863d3928973fccdc1d96042583730b5c7b76a_62",
"faa11db49f32a90b51dfc3f0254f9fd7a7b46d0b570abd47e1943b86d554447a_28",
"289b5a050a83837f192d7129e4c4e02570b94b4924e50159fad5ed1067cfbfeb_20"
]
}
},
"users_and_passwords": {
"analysis_date": 1548333206.30962,
"plugin_version": "0.4.1",
"summary": {}
}
},
"meta_data": {
"device_class": "Test-Data",
"device_name": "test_container",
"summary": {"BusyBox 1.24.2": [8], "Linux Kernel 2.6.39": [7], "OpenSSL 1.0.2r": [5], "hostapd 2.7": [3],
"libFLAC 1.3.2": [2], "wpa_supplicant 2.7": [1]}, "analysis_date": 1591092560.6536422,
"plugin_version": "0.4.1", "system_version": "3.7.1_1588174612"},
"exploit_mitigations": {"skipped": "blacklisted file type",
"summary": {"Canary disabled": [1, 2, 3, 4, 5], "Canary enabled": [6, 7, 8, 9],
"FORTIFY_SOURCE disabled": [1, 2, 3],
"FORTIFY_SOURCE enabled": [4, 5, 6, 7, 8, 9],
"NX disabled": [1, 2, 3, 4], "NX enabled": [5, 6, 7, 8, 9],
"PIE - invalid ELF file": [1, 2, 3, 4, 5, 6, 7, 8, 9],
"RELRO disabled": [1, 2, 3, 4, 5], "RELRO fully enabled": [6, 7],
"RELRO partially enabled": [8, 9]},
"analysis_date": 1591092560.9982054, "plugin_version": "0.1.2"},
"cve_lookup": {"cve_results": {}, "summary": {"BusyBox 1.24.2 (CRITICAL)": ["dat data."],
"Linux Kernel 2.6.39 (CRITICAL)": ["some data"],
"OpenSSL 1.0.2r": ["also some data"],
"hostapd 2.7": ["data"], "wpa_supplicant 2.7": ["data"]},
"analysis_date": 1591092564.6739304, "plugin_version": "0.0.4"},
"cpu_architecture": {
"summary": {"ARM, 32-bit, big endian (M)": [1, 2, 3, 4, 5, 6, 7, 8, 9],
"x86, 32-bit, little endian (M)": [1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4,
5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 42]},
"analysis_date": 1591092565.5146425, "plugin_version": "0.3.2"},
"binwalk": {"signature_analysis": "some Binwalk output",
"summary": {"something, that binwalk found": ["some data"]},
"entropy_analysis_graph": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeVwW5f7/8fcNCCgKoijumLtm7ktkphUnXHKpc8yjJJqdlpOWxSm3FLdvYZtHS9M0t056pF+LdY5mKWllkbiEZaJmqaiJigoILij3/P6Y4113oGJyO3jP6/l4zAPvua+Z+czc9w1vr2tmbodhGIYAAABgGz5WFwAAAIBriwAIAABgMwRAAAAAmyEAAgAA2AwBEAAAwGYIgAAAADZDAAQAALAZAiAAAIDNEAABAABshgAIAABgMwRAAAAAmyEAAgAA2AwBEAAAwGYIgAAAADZDAAQAALAZAiAAAIDNEAABAABshgAIAABgMwRAAAAAmyEAAgAA2AwBEAAAwGYIgAAAADZDAAQAALAZAiAAAIDNEAABAABshgAIAABgMwRAAAAAmyEAAgAA2AwBEAAAwGYIgAAAADZDAAQAALAZAiAAAIDNEAABAABshgAIAABgMwRAAAAAmyEAAijVFi1aJIfDcdHpm2++uaL1rVy5UhMnTvRMsQBwnfCzugAAKI7JkyfrhhtuKDS/QYMGV7SelStXatasWYRAALZGAARwXejevbvatWt3Tbd5/vx5OZ1O+fv7X9PtAoCnMQQM4Lq3d+9eORwOvfzyy5o7d67q16+vgIAAtW/fXhs3bnS1GzJkiGbNmiVJbsPIv1/H9OnTXevYvn27JOmzzz5T586dFRQUpIoVK6pPnz5KS0tzq2PixIlyOBzasWOH7rvvPgUHB6ty5coaMWKEzpw542rXpUsXtWzZssh9ady4saKjo0v0+ADA79EDCOC6kJ2drczMTLd5DodDlStXdj1eunSpTp48qUceeUQOh0Mvvvii7r33Xv38888qU6aMHnnkEf3yyy9avXq1/vWvfxW5nYULF+rMmTN6+OGHFRAQoEqVKmnNmjXq3r276tWrp4kTJ+r06dN67bXX1KlTJ23ZskV169Z1W8d9992nunXrKiEhQd98841effVVnThxQm+99ZYkadCgQXrooYe0bds2NW/e3LXcxo0btWvXLo0bN66EjhoAXIQBAKXYwoULDUlFTgEBAYZhGMaePXsMSUblypWN48ePu5b98MMPDUnGf/7zH9e8YcOGGUX96ruwjuDgYOPIkSNuz7Vq1cqoWrWqcezYMde8rVu3Gj4+PkZsbKxr3oQJEwxJRu/evd2Wf+yxxwxJxtatWw3DMIysrCwjMDDQGDVqlFu7J554wggKCjJyc3Ov9DABwBWhBxDAdWHWrFlq1KiR2zxfX1+3x/3791doaKjrcefOnSVJP//8c7G38+c//1lVqlRxPT506JBSU1M1cuRIVapUyTW/RYsW+tOf/qSVK1cWWsewYcPcHj/++ON6/fXXtXLlSrVo0UIhISHq06eP/v3vfyshIUEOh0MFBQVKTExU3759FRQUVOx6AeCPIAACuC506NDhsheB1KlTx+3xhTB44sSJYm/n91ca79u3T5J5bt7vNW3aVJ988ony8vLcQlvDhg3d2tWvX18+Pj7au3eva15sbKwSExP15Zdf6rbbbtOaNWt0+PBhDRo0qNi1AsAfxUUgALzG73sELzAMo9jrKFu2bEmV43LhQpPfio6OVnh4uN5++21J0ttvv61q1aopKiqqxLcPAL9HAARgK0WFsUuJiIiQJO3cubPQczt27FBYWFihIdsff/zR7fHu3bvldDrdLhbx9fXVwIED9e677+rEiRNavny5BgwYcNEQCwAliQAIwFYuhLWsrKxita9evbpatWqlxYsXuy2zbds2ffrpp+rRo0ehZS7cauaC1157TZJ5L8PfGjRokE6cOKFHHnlEubm5uv/++69oXwDgj+IcQADXhY8//lg7duwoNP+WW26Rj0/x/y/btm1bSdITTzyh6Oho+fr66q9//esll3nppZfUvXt3RUZG6sEHH3TdBiYkJKTIbxTZs2ePevfurW7duik5OVlvv/22Bg4cWOjef61bt1bz5s31//7f/1PTpk3Vpk2bYu8HAFwNAiCA60J8fHyR8xcuXKiuXbsWez333nuvHn/8cS1btkxvv/22DMO4bACMiorSqlWrNGHCBMXHx6tMmTLq0qWLXnjhhSK/ni4xMVHx8fEaPXq0/Pz8NHz4cL300ktFrjs2NlYjR47k4g8A15TDuJKzowEAFzVx4kRNmjRJR48eVVhYWLGWmTFjhp566int3bu30FXMAOApnAMIABYxDEPz589Xly5dCH8ArimGgAHgGsvLy9NHH32ktWvX6vvvv9eHH35odUkAbIYACADX2NGjRzVw4EBVrFhRY8eOVe/eva0uCYDNcA4gAACAzXAOIAAAgM0QAAEAAGyGAAgAAGAzXARyFZxOp3755RdVqFDhir9fFAAAWMMwDJ08eVI1atS4om8S8iYEwKvwyy+/qHbt2laXAQAA/oD9+/erVq1aVpdhCXvG3hJSoUIFq0sAAAB/kJ3/jhMArwLDvgAAXL/s/HecAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZvysLgAXMVbmq3Ne0vMW1wIAKP0ellReUq6kuRbXUgI2SqomKUNSe4tr8UYEwNLKT2b/LK8QAKA4yksKtrqIklNNUi2ri/BiDAEDAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYjNcEwC+++EK9evVSjRo15HA4tHz58ssus27dOrVp00YBAQFq0KCBFi1a5PlCAQAALOY1ATAvL08tW7bUrFmzitV+z5496tmzp26//XalpqbqySef1N/+9jd98sknHq4UAADAWn5WF1BSunfvru7duxe7/Zw5c3TDDTfolVdekSQ1bdpU69ev1z//+U9FR0d7qkwAAADLeU0P4JVKTk5WVFSU27zo6GglJydbVBEAAMC14TU9gFcqIyND4eHhbvPCw8OVk5Oj06dPq2zZsoWWOXv2rM6ePet6nJOT4/E6vZGPj+R0mv92OCTDKNymfHnpzBnp/PmLL1tcF9sGYAd8ZryHj48UFiYdPcrrg6tn2wD4RyQkJGjSpEnXZFsOh2TI/MB/ukby9S3c5sQJKTBQKiKr6vhxqVKlK9vm2bNSQMCvj7dskfLzpYoVpSZNrmxdRdm1S2rU6PLtCgrc9/fECbO2atV+nff995Kfn1SunBQRYc47dEiqXFny97/6Wovjl1/MOi6cMbB3rxQebr4e+flXVseJE1JoqPnvtDRzPeXKmevwuYJ++tWrpTvuKPr9ciV+W/+aNdINN5g1lS9vvrcCAqSgoEuv49Qps46ff5aqVzffR0W1KVfu18fnz5uvq2Qek9xcqXZt8/HOnVJOjtS+/a/tDx6Uata8dB1JSVKDBr++TyRpzx5zuQv7uG2bGZIqVpTq1Ln4un7/3pSkvLzLH4s/avdu81jn5ZXMZ9DTdu6UGjd2n7djx6+1Hztm/seuZs2ij+VvJSWZberUufy+//Z981vFeX9Ihd+HxZGdLYWEXLrN1q1Sy5ZXtt6iHD0qValy+Xb9kqXMfDMkvrTQPC67dkkVKkidO5ttfvu7piiX26+ffpLq17+y+i+4sB9bt0rp6VKvXpduX6WfpMw/ti1cnsMwvO//EQ6HQx988IH69u170Ta33Xab2rRpo+nTp7vmLVy4UE8++aSys7OLXKaoHsDaF/46laBq1aQjj0pOmWP0SV1KfBMAAC/jCoD+0v+LtLqaqxfZTwrIlA6Xkaqd88w2srOzFRwc7JmVl3K27QGMjIzUypUr3eatXr1akZEX/9QEBAQo4LddZB7SrJl0xONbAQCg9PPzk+ShAGhnXhMAc3NztXv3btfjPXv2KDU1VZUqVVKdOnU0ZswYHTx4UG+99ZYk6dFHH9XMmTM1cuRIDR06VJ999pneeecdrVixwqpdcGnQQFr3v3//tnt29mxzSCg/3xxGOX7cHG4MDTWHxsqUMbvm27Y1hx1+e4rjvn3S55+bQ6QpKdKf/yxlZprr2b9fSk42h9qOHDGHjiMizKGbvXvNYZpKlaQbbzSHPdPSzCG9kyelevWk06elm24ya/Hzkw4cMGvJypK2bzeHVqpUMYcP09PNIc29e6XgYHO46MQJs+4NG6SqVc19SU83669TR8rIMOe1a2du69tvzfUZhjlE5O9vDnWcPm1uv0IF6dw5c7+CgqS6dc1jduyYuf5y5cz6DxyQEhJ+HTrasUN6+22pRg1zWT8/s8b27c3j0qGDua5588yabrjB3I8zZ6Ratcxj9PPP5pDdHXeYr8HBg+aQSb160saN5nM9eri/3rt3m8vddZf5mixbZg7h7NtnDk01a2Yei127zH3s1s0casvNNffvQif01q3m8s2aST17mvOWLzeHxuvXN9d/4oQ5/Ll3r3mcQkLMY3jhmP/wg7mtkyelFi3ModHhw38dfj9+XPr3v81j/uCD0nffSa1amc+dPm2+R0+fNof6K1Uyj9OuXeb2+/Y13wN795rHxcfHPOZ33mm+hw8fNmtt1co8pqmp0rp10v33m++9tDTz/Xfnneb2/vtf83Vs1cp8bVNTzWPSrp15HI4cMR8fP26uv25d87WtWVN6/31zXzt0+HUIXzLXn51trqtqVXNYuEkT8zh/84308ce/DkHfcIP5vjp3ztx+kyZm/adPm++bZs3MY/v999LKleZnIjRUuvtucx1ffGEe1/x86csvzWUqVDCPfc2aZu0ZGeZyVaqYxyQszHxfHjxovv8rVTJr++kn83HVqlLDhub77bcWLjRrPHjQfL5mTXO4e+tW87hGR5ufh9RU83NcrZq5rtxcs12NGuYQop+fuX8hIeaw9PHj5mkoGzean/XQUPP3z4YN5vOtWpnHuW1bc/82bjTradPGfB/26mW+99auNY9Vv37m819+Kf3nP+bxr1vX3Hb9+ubvri++MN/L2dnm56BmTfP1rlXL/HwFB5v78MUX5qk0Dod5PEJDzf04c8b8zBmG2f6nn8z3c/Xq5utXvrz5e7J6dbOWggJzP2vWNGtITzePVYsW5mc0OPjXz+CWLeYxCwgw223aZG6nTBnz97phmJ/pGjWke+/9dZkvvjCP/Z/+ZL4f8vLMz+qpU+ZxMgzzWNSvb/48dMhs5+dnvgfKlDFfr4Jbf33Nf/jB3LdvvjF/53XoYP47PFxq3txcb3CwuQ0fH3Ndvr5m3SEh5jFt0sT8fbVxo7mPBQXme3LDhl+PU4UK5naqVDGP8dmz5usdEmK2/f5787Nw6JD5+t1wg1nvhx+ar8vAge5/q3bvlmbONH9fXOiO8bXt5aoeZniJtWvXGjLzkts0ePBgwzAMY/DgwUaXLl0KLdOqVSvD39/fqFevnrFw4cIr2mZ2dnaR27zaKSBAhuJlaOL/fnpgG0zWTpUqyQgKsr6O4kwhITJ69JBRpYr1tXhqql/fnKyuo6QnPz/ra2C6hlOczL8bcaWglqucGjaUcSZMhiEZJ8p7bjvZ2dklE0KuQ155DuC1kpOTo5DLnQX8R8XLPAHQKWmyZzYBAPAicZKCJeVImmZxLVepQQNpW5Z5DmBWeSk01zPbsfM5gHSsAgCAUoWuKc8jAAIAANgMARAAAJQq9AB6HgEQAACUKgRAzyMAAgCAUoUA6HkEQAAAAJshAAIAgFLltz2ADuvK8GoEQAAAUKowBOx5BEAAAFCqEAA9jwAIAABKL8aAPYIACAAAShV6AD2PAAgAAEoVAqDnEQABAECpQgD0PAIgAACAzRAAAQBAqUIPoOcRAAEAQKlCAPQ8AiAAAChVCICeRwAEAAClFrcB9AwCIAAAKFXoAfQ8AiAAAChVnE6rK/B+BEAAAFB6MQbsEQRAAABQqjAE7HkEQAAAUKoQAD2PAAgAAEoVAqDnEQABAABshgAIAABKFXoAPY8ACAAAShUCoOcRAAEAQKlCAPQ8AiAAAIDNEAABAECpQg+g5xEAAQBAqfLbAMgXgXgGARAAAJQq9AB6HgEQAACUXnQBegQBEAAAlCr0AHoeARAAAJQqBEDPIwACAIBShQDoeQRAAAAAmyEAAgCAUoUeQM8jAAIAgFKFAOh5BEAAAFCqEAA9jwAIAABgMwRAAABQqtAD6HkEQAAAUKrwXcCeRwAEAAClCj2AnkcABAAApRddgB5BAAQAAKUKPYCeRwAEAAClCgHQ8wiAAAAANkMABAAAsBkCIAAAKHUYBfYsAiAAAIDNeFUAnDVrlurWravAwEB17NhRKSkpl2w/ffp0NW7cWGXLllXt2rX11FNP6cyZM9eoWgAAAGt4TQBMTExUXFycJkyYoC1btqhly5aKjo7WkSNHimy/dOlSjR49WhMmTFBaWprmz5+vxMREjR079hpXDgAAcG15TQCcNm2aHnroIT3wwANq1qyZ5syZo3LlymnBggVFtv/666/VqVMnDRw4UHXr1tVdd92lAQMGXLbXEAAA4HrnFQEwPz9fmzdvVlRUlGuej4+PoqKilJycXOQyt9xyizZv3uwKfD///LNWrlypHj16XHQ7Z8+eVU5OjtsEAABwvfGzuoCSkJmZqYKCAoWHh7vNDw8P144dO4pcZuDAgcrMzNStt94qwzB0/vx5Pfroo5ccAk5ISNCkSZNKtHYAAHBxfBOcZ3hFD+AfsW7dOj3//PN6/fXXtWXLFr3//vtasWKFpkyZctFlxowZo+zsbNe0f//+a1gxAAD2kZVl/sw5aW0d3soregDDwsLk6+urw4cPu80/fPiwqlWrVuQy48eP16BBg/S3v/1NknTTTTcpLy9PDz/8sJ599ln5+BTOxgEBAQoICCj5HQAAAG7Onzd/FhRYW4e38ooeQH9/f7Vt21ZJSUmueU6nU0lJSYqMjCxymVOnThUKeb6+vpIkgy8hBAAAXswregAlKS4uToMHD1a7du3UoUMHTZ8+XXl5eXrggQckSbGxsapZs6YSEhIkSb169dK0adPUunVrdezYUbt379b48ePVq1cvVxAEAADwRl4TAPv376+jR48qPj5eGRkZatWqlVatWuW6MCQ9Pd2tx2/cuHFyOBwaN26cDh48qCpVqqhXr1567rnnrNoFAACAa8JhMN75h+Xk5CgkJMQzK4+XOUDvlDTZM5sAAHiROEnBknIkTbO4lhKwX1ItSQck1fbQNrKzsxUcHOyhtZduXnEOIAAAAIqPAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZiwPgBMmTNC+ffusLgMAAMA2LA+AH374oerXr68777xTS5cu1dmzZ60uCQAAwKtZHgBTU1O1ceNG3XjjjRoxYoSqVaumv//979q4caPVpQEAAHglywOgJLVu3VqvvvqqfvnlF82fP18HDhxQp06d1KJFC82YMUPZ2dlWlwgAAOA1SkUAvMAwDJ07d075+fkyDEOhoaGaOXOmateurcTERKvLAwAA8AqlIgBu3rxZw4cPV/Xq1fXUU0+pdevWSktL0+eff64ff/xRzz33nJ544onLrmfWrFmqW7euAgMD1bFjR6WkpFyyfVZWloYNG6bq1asrICBAjRo10sqVK0tqtwAAAEolP6sLuOmmm7Rjxw7dddddmj9/vnr16iVfX1+3NgMGDNCIESMuuZ7ExETFxcVpzpw56tixo6ZPn67o6Gjt3LlTVatWLdQ+Pz9ff/rTn1S1alW9++67qlmzpvbt26eKFSuW6P4BAACUNpYHwPvuu09Dhw5VzZo1L9omLCxMTqfzkuuZNm2aHnroIT3wwAOSpDlz5mjFihVasGCBRo8eXaj9ggULdPz4cX399dcqU6aMJKlu3bp/fEcAAACuE5YPAY8fP94V/gzDkGEYV7yO/Px8bd68WVFRUa55Pj4+ioqKUnJycpHLfPTRR4qMjNSwYcMUHh6u5s2b6/nnn1dBQcFFt3P27Fnl5OS4TQAAANcbywOgJM2fP1/NmzdXYGCgAgMD1bx5c7355pvFXj4zM1MFBQUKDw93mx8eHq6MjIwil/n555/17rvvqqCgQCtXrtT48eP1yiuv6P/+7/8uup2EhASFhIS4ptq1axe7RgAAgNLC8iHg+Ph4TZs2TY8//rgiIyMlScnJyXrqqaeUnp6uyZMne2S7TqdTVatW1dy5c+Xr66u2bdvq4MGDeumllzRhwoQilxkzZozi4uJcj3NycgiBAADgumN5AJw9e7bmzZunAQMGuOb17t1bLVq00OOPP16sABgWFiZfX18dPnzYbf7hw4dVrVq1IpepXr26ypQp43bBSdOmTZWRkaH8/Hz5+/sXWiYgIEABAQHF3TUAAIBSyfIh4HPnzqldu3aF5rdt21bnz58v1jr8/f3Vtm1bJSUlueY5nU4lJSW5ehV/r1OnTtq9e7fbxSW7du1S9erViwx/AAAA3sLyADho0CDNnj270Py5c+cqJiam2OuJi4vTvHnztHjxYqWlpenvf/+78vLyXFcFx8bGasyYMa72f//733X8+HGNGDFCu3bt0ooVK/T8889r2LBhV79TAAAApZjlQ8CSeRHIp59+qptvvlmStGHDBqWnpys2NtbtnLtp06ZddB39+/fX0aNHFR8fr4yMDLVq1UqrVq1yXRiSnp4uH59f827t2rX1ySef6KmnnlKLFi1Us2ZNjRgxQqNGjfLQXgIAAJQODuOP3HelBN1+++3FaudwOPTZZ595uJork5OTo5CQEM+sPF5m/6xTkmeugwEAeJM4ScGSciRdvL/kurFfUi1JByR56nLL7OxsBQcHe2jtpZvlPYBr1661ugQAAABbsfwcwN86cOCADhw4YHUZAAAAXs3yAOh0OjV58mSFhIQoIiJCERERqlixoqZMmXLZr38DAADAlbN8CPjZZ5/V/PnzNXXqVHXq1EmStH79ek2cOFFnzpzRc889Z3GFAAAA3sXyALh48WK9+eab6t27t2vehatyH3vsMQIgAABACbN8CPj48eNq0qRJoflNmjTR8ePHLagIAADAu1keAFu2bKmZM2cWmj9z5ky1bNnSgooAAAC8m+VDwC+++KJ69uypNWvWuL62LTk5Wfv379fKlSstrg4AAMD7WN4D2KVLF+3atUv33HOPsrKylJWVpXvvvVc7d+5U586drS4PAADA61jaA3ju3Dl169ZNc+bM4WIPAACAa8TSHsAyZcrou+++s7IEAAAA27F8CPj+++/X/PnzrS4DAADANiy/COT8+fNasGCB1qxZo7Zt2yooKMjt+WnTvOAbrQEAAEoRywPgtm3b1KZNG0nSrl27LK4GAADA+1keANeuXWt1CQAAALZi+TmAQ4cO1cmTJwvNz8vL09ChQy2oCAAAwLtZHgAXL16s06dPF5p/+vRpvfXWWxZUBAAA4N0sGwLOycmRYRgyDEMnT55UYGCg67mCggKtXLlSVatWtao8AAAAr2VZAKxYsaIcDoccDocaNWpU6HmHw6FJkyZZUBkAAIB3sywArl27VoZh6I477tB7772nSpUquZ7z9/dXRESEatSoYVV5AAAAXsuyANilSxdJ0p49e1S7dm35+Fh+OiIAAIAtWH4bmIiICGVlZSklJUVHjhyR0+l0ez42NtaiygAAALyT5QHwP//5j2JiYpSbm6vg4GA5HA7Xcw6HgwAIAABQwiwfd/3HP/6hoUOHKjc3V1lZWTpx4oRrOn78uNXlAQAAeB3LA+DBgwf1xBNPqFy5claXAgAAYAuWB8Do6Ght2rTJ6jIAAABsw/JzAHv27KlnnnlG27dv10033aQyZcq4Pd+7d2+LKgMAAPBOlgfAhx56SJI0efLkQs85HA4VFBRc65IAAAC8muUB8Pe3fQEAAIBnWXYOYI8ePZSdne16PHXqVGVlZbkeHzt2TM2aNbOiNAAAAK9mWQD85JNPdPbsWdfj559/3u22L+fPn9fOnTutKA0AAMCrWRYADcO45GMAAAB4huW3gQEAAMC1ZVkAdDgcbl/7dmEeAAAAPMuyq4ANw9CQIUMUEBAgSTpz5oweffRRBQUFSZLb+YEAAAAoOZYFwMGDB7s9vv/++wu1iY2NvVblAAAA2IZlAXDhwoVWbRoAAMDWuAgEAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGzGqwLgrFmzVLduXQUGBqpjx45KSUkp1nLLli2Tw+FQ3759PVwhAACA9bwmACYmJiouLk4TJkzQli1b1LJlS0VHR+vIkSOXXG7v3r16+umn1blz52tUKQAAgLW8JgBOmzZNDz30kB544AE1a9ZMc+bMUbly5bRgwYKLLlNQUKCYmBhNmjRJ9erVu4bVAgAAWMcrAmB+fr42b96sqKgo1zwfHx9FRUUpOTn5ostNnjxZVatW1YMPPlis7Zw9e1Y5OVNeciIAACAASURBVDluEwAAwPXGKwJgZmamCgoKFB4e7jY/PDxcGRkZRS6zfv16zZ8/X/PmzSv2dhISEhQSEuKaateufVV1AwAAWMErAuCVOnnypAYNGqR58+YpLCys2MuNGTNG2dnZrmn//v0erBIAAMAz/KwuoCSEhYXJ19dXhw8fdpt/+PBhVatWrVD7n376SXv37lWvXr1c85xOpyTJz89PO3fuVP369QstFxAQoICAgBKuHgAA4Nryih5Af39/tW3bVklJSa55TqdTSUlJioyMLNS+SZMm+v7775Wamuqaevfurdtvv12pqakM7QIAAK/mFT2AkhQXF6fBgwerXbt26tChg6ZPn668vDw98MADkqTY2FjVrFlTCQkJCgwMVPPmzd2Wr1ixoiQVmg8AAOBtvCYA9u/fX0ePHlV8fLwyMjLUqlUrrVq1ynVhSHp6unx8vKLDEwAA4Ko4DMMwrC7iepWTk6OQkBDPrDxe5gC9U9Jkz2wCAOBF4iQFS8qRNM3iWkrAfkm1JB2Q5KkTs7KzsxUcHOyhtZdudIkBAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZrwqAM6aNUt169ZVYGCgOnbsqJSUlIu2nTdvnjp37qzQ0FCFhoYqKirqku0BAAC8hdcEwMTERMXFxWnChAnasmWLWrZsqejoaB05cqTI9uvWrdOAAQO0du1aJScnq3bt2rrrrrt08ODBa1w5AADAteUwDMOwuoiS0LFjR7Vv314zZ86UJDmdTtWuXVuPP/64Ro8efdnlCwoKFBoaqpkzZyo2NrZY28zJyVFISMhV1X1R8TLjuVPSZM9sAgDgReIkBUvKkTTN4lpKwH5JtSQdkFTbQ9vIzs5WcHCwh9ZeunlFD2B+fr42b96sqKgo1zwfHx9FRUUpOTm5WOs4deqUzp07p0qVKl20zdmzZ5WTk+M2AQAAXG+8IgBmZmaqoKBA4eHhbvPDw8OVkZFRrHWMGjVKNWrUcAuRv5eQkKCQkBDXVLu2p/5PAgAA4DleEQCv1tSpU7Vs2TJ98MEHCgwMvGi7MWPGKDs72zXt37//GlYJAABQMvysLqAkhIWFydfXV4cPH3abf/jwYVWrVu2Sy7788suaOnWq1qxZoxYtWlyybUBAgAICAq66XgAAACt5RQ+gv7+/2rZtq6SkJNc8p9OppKQkRUZGXnS5F198UVOmTNGqVavUrl27a1EqAACA5byiB1CS4uLiNHjwYLVr104dOnTQ9OnTlZeXpwceeECSFBsbq5o1ayohIUGS9MILLyg+Pl5Lly5V3bp1XecKli9fXuXLl7dsPwAAADzNawJg//79dfToUcXHxysjI0OtWrXSqlWrXBeGpKeny8fn1w7P2bNnKz8/X3/5y1/c1jNhwgRNnDjxWpYOAABwTXnNfQCtwH0AAQClBvcBvGLcBxAAAAC2QQAEAACwGQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgMARAAAMBmCIAAAAA2QwAEAACwGQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgMARAAAMBmCIAAAAA242d1AQCA0q1MmTKKiIiQr6+v1aXgUkIlBUnyldTY4lpKwDlJp/7380p2x+l06tChQ8rNzfVMYV6CAAgAuKiaNWtq2bJlKlu2rNWl4Ep0t7qAq3f8f5MkLfkDy3/wwQd6/vnnZRhGCVblPQiAAIAiORwOTZw4UUFBQWrYsKF8fDhrCKWf0+lUbm6u+vbtK0l67rnnLK6odCIAAgCKFBYWptatWysiIkLly5e3uhyg2C68X++55x4tXrxYBw4csLii0of/zgEAihQaGipJCggIsLgS4MpdCIGtW7dW1apVLa6m9CEAAgCK5HA43H4C15MLpywYhqEaNWrQi/07BEAAAOC18vPz5evrS0/27xAAAQC2s27dOjkcDmVlZVldSiGLFi1SxYoVL9lmyJAhroscriWrtlsS6Ml2RwAEAHiNC8HuYtPtt98uSbrlllt06NAhhYSEWFzxHzNjxgwtWrTI6jIua+/evXI4HEpNTbW6FPwOVwEDALzGhWD3ex999JEeffRRPfbYY5Ikf39/VatW7VqXp/z8fPn7+1/1eq7X4IrSgx5AAIDXuBDsfjudOHFCTz/9tMaOHat+/fpJKjwEfGHYdfny5WrYsKECAwMVHR2t/fv3X3J7o0aNUqNGjVSuXDnVq1dP48eP17lz51zPT5w4Ua1atdKbb76pG264QYGBgZKkrKwsPfLIIwoPD1dgYKCaN2+u//73v27r/uSTT9S0aVOVL19e3bp1cwu2vx2KnTt3rmrUqCGn0+m2fJ8+fTR06FDX4w8//FBt2rRRYGCg6tWrp0mTJun8+fMX3beCggLFxcWpYsWKqly5skaOHFnopsqrVq3Srbfe6mpz991366effnI9f8MNN0gyr8R1OBzq2rWrJGnjxo3605/+pLCwMIWEhKhLly7asmXLJY81ShYBEADgtbKystSnTx917dpVU6ZMuWTbU6dO6bnnntNbb72lr776SllZWfrrX/96yWUqVKigRYsWafv27ZoxY4bmzZunf/7zn25tdu/erffee0/vv/++UlNT5XQ61b17d3311Vd6++23tX37dk2dOtXtq/ZOnTqll19+Wf/617/0xRdfKD09XU8//XSRNfTr10/Hjh3T2rVrXfOOHz+uVatWKSYmRpL05ZdfKjY2ViNGjND27dv1xhtvaNGiRZe8SfIrr7yiRYsWacGCBVq/fr2OHz+uDz74wK1NXl6e4uLitGnTJiUlJcnHx0f33HOPK4ympKRIktasWaNDhw7p/ffflySdPHlSgwcP1vr16/XNN9+oYcOG6tGjh06ePHnJ442SwxAwAKDY2s1tp4zcjGu+3Wrlq2nTw5uuaBmn06mBAwfKz89PS5YsuexFAOfOndPMmTPVsWNHSdLixYvVtGlTpaSkqEOHDkUuM27cONe/69atq6efflrLli3TyJEjXfPz8/P11ltvqUqVKpKkTz/9VCkpKUpLS1OjRo0kSfXq1StUy5w5c1S/fn1J0vDhwzV58uQiawgNDVX37t21dOlS3XnnnZKkd999V2FhYa5zHidNmqTRo0dr8ODBru1NmTJFI0eO1IQJE4pc7/Tp0zVmzBjde++9kqQ5c+bok08+cWvz5z//2e3xggULVKVKFW3fvl3Nmzd37XPlypXdhtzvuOMOt+Xmzp2rihUr6vPPP9fdd99dZD0oWQRAAECxZeRm6ODJg1aXUSxjx45VcnKyUlJSVKFChcu29/PzU/v27V2PmzRpoooVKyotLe2iATAxMVGvvvqqfvrpJ+Xm5ur8+fMKDg52axMREeEKQpKUmpqqWrVqucJfUcqVK+cKf5JUvXp1HTly5KLtY2Ji9NBDD+n1119XQECAlixZor/+9a+ue+Ft3bpVX331lVuPX0FBgc6cOaNTp06pXLlybuvLzs7WoUOHXGH4wvFp166d2zDwjz/+qPj4eG3YsEGZmZmunr/09HQ1b978ovUePnxY48aN07p163TkyBEVFBTo1KlTSk9Pv+gyKFkEQABAsVUrf+0vnPgj2122bJlefvllrVixQg0bNvRITcnJyYqJidGkSZMUHR2tkJAQLVu2TK+88opbu6CgILfHZcuWvey6y5Qp4/bY4XAUOv/ut3r16iXDMLRixQq1b99eX375pdtQdG5uriZNmuTqzfutC+cl/hG9evVSRESE5s2b5zoPsXnz5srPz7/kcoMHD9axY8c0Y8YMRUREKCAgQJGRkZddDiWHAAgAKLYrHYa1Qmpqqh588EFNnTpV0dHRxV7u/Pnz2rRpk6u3b+fOncrKylLTpk2LbP/1118rIiJCzz77rGvevn37LrudFi1a6MCBA9q1a9clewGvRGBgoO69914tWbJEu3fvVuPGjdWmTRvX823atNHOnTvVoEGDYq0vJCRE1atX14YNG3TbbbdJMo/P5s2bXes9duyYdu7cqXnz5qlz586SpPXr17ut58IVzwUFBW7zv/rqK73++uvq0aOHJGn//v3KzMz8A3uOP4oACADwGpmZmerbt6+6du2q+++/XxkZ7ucr+vr6ug3H/laZMmX0+OOP69VXX5Wfn5+GDx+um2+++aLDvw0bNlR6erqWLVum9u3ba8WKFYUukihKly5ddNttt+nPf/6zpk2bpgYNGmjHjh1yOBzq1q3ble/0/8TExOjuu+/WDz/8oPvvv9/tufj4eN19992qU6eO/vKXv8jHx0dbt27Vtm3b9H//939Frm/EiBGaOnWqGjZsqCZNmmjatGluN84ODQ1V5cqVNXfuXFWvXl3p6ekaPXq02zqqVq2qsmXLatWqVapVq5YCAwMVEhKihg0b6l//+pfatWunnJwcPfPMM8XqGUXJ4SpgAIDXWLFihfbt26eVK1eqevXqhabfnuP3e+XKldOoUaM0cOBAderUSeXLl1diYuJF2/fu3VtPPfWUhg8frlatWunrr7/W+PHji1Xne++9p/bt22vAgAFq1qyZRo4cWaiX7ErdcccdqlSpknbu3KmBAwe6PRcdHa3//ve/+vTTT9W+fXvdfPPN+uc//6mIiIiLru8f//iHBg0apMGDBysyMlIVKlTQPffc43rex8dHy5Yt0+bNm9W8eXM99dRTeumll9zW4efnp1dffVVvvPGGatSooT59+kiS5s+frxMnTqhNmzYaNGiQnnjiCVWtWvWq9h9XxmFc6qQCXFJOTo7nbsYZLzOeOyUVfeEXAHhU48aNtWTJEjVt2rTQRQLeZtGiRXryySdL5VfD4Y85deqU0tLSNHbsWB07dkz79u0rNMycnZ1d6KIdu6AHEAAAwGYIgAAAADZDAAQA2N6QIUMY/oWtEAABAABshgAIAABgMwRAAAAAmyEAAgAA2AwBEAAAwGYIgAAAADZDAAQAoBjWrVsnh8Nx1beLmTt3rmrXri0fHx9Nnz79D69nyJAh6tu371XV4ildu3bVk08+eck2DodDy5cvv0YV4fcIgAAArzJkyBA5HI5CU7du3awuTTk5ORo+fLhGjRqlgwcP6uGHHy7U5mL1X5gWL14sSZoxY4YWLVp0jfeg5Bw6dEjdu3e3ugzb8rO6AAAASlq3bt20cOFCt3kBAQEWVfOr9PR0nTt3Tj179lT16tWLbDNjxgxNnTq10PxBgwZp9+7d6tmzpyR57rvoLyM/P1/+/v5XvZ5q1aqVQDX4o+gBBAB4nYCAAFWrVs1tCg0NdT3vcDj05ptv6p577lG5cuXUsGFDffTRR27rWLlypRo1aqSyZcvq9ttv1969ey+73fT0dPXp00fly5dXcHCw7rvvPh0+fFiStGjRIt10002SpHr16snhcBS5zpCQkEK1z58/X8nJyVq+fLnCwsIkFR4C7tq1q4YPH67hw4crJCREYWFhGj9+vAzDuGi9P/30k/r06aPw8HCVL19e7du315o1a9za1K1bV1OmTFFsbKyCg4NdvZZfffWVunbtqnLlyik0NFTR0dE6ceKEazmn06mRI0eqUqVKqlatmiZOnOi23t8OAd9yyy0aNWqU2/NHjx5VmTJl9MUXX0iSzp49q6efflo1a9ZUUFCQOnbsqHXr1l1033BpBEAAgC1NmjRJ9913n7777jv16NFDMTExOn78uCRp//79uvfee9WrVy+lpqbqb3/7m0aPHn3J9TmdTvXp00fHjx/X559/rtWrV+vnn39W//79JUn9+/d3hauUlBQdOnRItWvXvmyd//3vfxUfH6+FCxeqZcuWl2y7ePFi+fn5KSUlRTNmzNC0adP05ptvXrR9bm6uevTooaSkJH377bfq1q2bevXqpfT0dLd2L7/8slq2bKlvv/1W48ePV2pqqu688041a9ZMycnJWr9+vXr16qWCggK3WoKCgrRhwwa9+OKLmjx5slavXl1kHTExMVq2bJlbWE1MTFSNGjXUuXNnSdLw4cOVnJysZcuW6bvvvlO/fv3UrVs3/fjjj5c9hiiC4UVmzpxpREREGAEBAUaHDh2MDRs2XLL9O++8YzRu3NgICAgwmjdvbqxYseKKtpednW1I8swUL0MT//fTU9tgYmJiusTUuHFjY9OmTUZeXt6vv/jatjWMmjWv/dS2bbF/Nw8ePNjw9fU1goKC3KbnnnvO1UaSMW7cONfj3NxcQ5Lx8ccfG4ZhGGPGjDGaNWvmtt5Ro0YZkowTJ04Uud1PP/3U8PX1NdLT013zfvjhB0OSkZKSYhiGYXz77beGJGPPnj3F2pe0tDQjODjYePbZZ4vczz59+rged+nSxWjatKnhdDrdam7atGmxtnXBjTfeaLz22muuxxEREUbfvn3d2gwYMMDo1KnTRdfRpUsX49Zbb3Wb1759e2PUqFGux5KMDz74wDAMwzhy5Ijh5+dnfPHFF67nIyMjXe337dtn+Pr6GgcPHnRb55133mmMGTOmyBry8vKMTZs2GXfddZfRtm1bIywsrNB7PDs7+1KHwqt5zTmAiYmJiouL05w5c9SxY0dNnz5d0dHR2rlzp6pWrVqo/ddff60BAwYoISFBd999t5YuXaq+fftqy5Ytat68uQV7AADXgYwM6eBBq6u4rNtvv12zZ892m1epUiW3xy1atHD9OygoSMHBwTpy5IgkKS0tTR07dnRrHxkZecltpqWlqXbt2m69es2aNVPFihWVlpam9u3bX9E+ZGdnq2/fvurSpYumTJlSrGVuvvlmORwOt5pfeeUVFRQUyNfXt1D73NxcTZw4UStWrNChQ4d0/vx5nT59ulAPYLt27dwep6amql+/fpes5bfHV5KqV6/uOr6/V6VKFd11111asmSJOnfurD179ig5OVlvvPGGJOn7779XQUGBGjVq5Lbc2bNnVbly5UvWgaJ5TQCcNm2aHnroIT3wwAOSpDlz5mjFihVasGBBkd32M2bMULdu3fTMM89IkqZMmaLVq1dr5syZmjNnzjWtHQCuG1aduH+F2w0KClKDBg0u2aZMmTJujx0Oh5xO5xWX5glOp1MDBw6Uj4+PlixZ4hbqStLTTz+t1atX6+WXX1aDBg1UtmxZ/eUvf1F+fr5bu6CgILfHZcuWvey6r/T4xsTE6IknntBrr72mpUuX6qabbnKdM5mbmytfX19t3ry5UJAtX778ZWtBYV4RAPPz87V582aNGTPGNc/Hx0dRUVFKTk4ucpnk5GTFxcW5zYuOjr7kPYnOnj2rs2fPuh7n5ORcZeUAcJ3ZtMnqCq6Jpk2bFroo5JtvvrnsMvv379f+/ftdvYDbt29XVlaWmjVrdkXbHzdunL7++mulpKSoQoUKxV5uw4YNhWpu2LBhkb1/knkhx5AhQ3TPPfdIMoNWcS52adGihZKSkjRp0qRi13Y5ffr00cMPP6xVq1Zp6dKlio2NdT3XunVrFRQU6MiRI65zAnF1vOIikMzMTBUUFCg8PNxtfnh4uDIyMopcJiMj44raS1JCQoJCQkJcU3FO3gUAXHtnz55VRkaG25SZmVns5R999FH9+OOPeuaZZ7Rz504tXbr0svfci4qK0k033aSYmBht2bJFKSkpio2NVZcuXQoNoV7KO++8o6lTp2r69OmqUKFCof3Izc296LLp6emKi4vTzp079e9//1uvvfaaRowYcdH2DRs21Pvvv6/U1FRt3bpVAwcOLFYv6JgxY7Rx40Y99thj+u6777Rjxw7Nnj37io7x7wUFBalv374aP3680tLSNGDAANdzjRo1UkxMjGJjY/X+++9rz549SklJUUJCglasWPGHt2lnXhEAr5UxY8YoOzvbNe3fv99zGzsvyfm/nwCAK7Jq1SpVr17dbbr11luLvXydOnX03nvvafny5WrZsqXmzJmj559//pLLOBwOffjhhwoNDdVtt92mqKgo1atXT4mJiVdU++zZs2UYhoYMGVJoH6pXr66XX375osvGxsbq9OnT6tChg4YNG6YRI0YUebPpC6ZNm6bQ0FDdcsst6tWrl6Kjo9WmTZvL1tioUSN9+umn2rp1qzp06KDIyEh9+OGH8vO7uoHFmJgYbd26VZ07d1adOnXcnlu4cKFiY2P1j3/8Q40bN1bfvn21cePGQu1QPA7DuMQNgq4T+fn5KleunN599123eyINHjxYWVlZ+vDDDwstU6dOHcXFxbl9Vc2ECRO0fPlybd26tVjbzcnJsexGnADgaY0bN9aSJUvUtGlTlStXzupycBldu3ZVq1atrurr5bzJqVOnlJaWprFjx+rYsWPat29foR7K7OxsBQcHW1ShtbyiB9Df319t27ZVUlKSa57T6VRSUtJFr9qKjIx0ay9Jq1evvuxVXgAAANc7r7gIRJLi4uI0ePBgtWvXTh06dND06dOVl5fnuio4NjZWNWvWVEJCgiRpxIgR6tKli1555RX17NlTy5Yt06ZNmzR37lwrdwMAAMDjvCYA9u/fX0ePHlV8fLwyMjLUqlUrrVq1ynWhR3p6unx8fu3wvOWWW7R06VKNGzdOY8eOVcOGDbV8+XLuAQgAuC7xtWi4El4TACW5vgOxKEV9MPr163fZG1kCAAB4G684BxAAUPIuXCPoBdcKwoYu3M6mtNzcu7QhAAIAinTixAlJcrsBPnC9uHC/xKu5N6E386ohYABAycnMzNS3334rHx8f+fv7u51HDZRWTqdTubm5OnDggNauXatTp05d0bep2IVX3AfQKtwHEIC3q1mzphITExUYGGh1KcAV+eyzzzR//nwZhqEKFSpo7969OnbsmFsbO98HkB5AAMBFHTx4UHfeeae6dOmismXL6vTp01aXBFyS0+lUZmamTp06JUkKCAhQQUGB8vPzLa6sdCEAAgAu6ezZs0pOTlZERIQCAwNlGAYXhqBU8/HxUfny5eVwOOR0OvXLL7/o5MmTVpdVqhAAAQCXdfLkSe3Zs0cVKlS46u97Ba6VgoICnTlzxnVBE37FpxgAUCx5eXnKy8uzugwAJYBLugAAAGyGAHgVOAcGAIDrl53/jhMArwInlAIAcP2y899x7gN4FS5cWVShQgU5HI4SXXdOTo5q166t/fv3e+U9irx9/yTv30dv3z/J+/fR2/dP8v599Pb9kzyzj4Zh6OTJk6pRo4Ztb3DORSBXwcfHR7Vq1fLoNoKDg732Qy15//5J3r+P3r5/kvfvo7fvn+T9++jt+yeV/D7a/Ysc7Bl7AQAAbIwACAAAYDO+EydOnGh1ESiar6+vunbt6rU3XfX2/ZO8fx+9ff8k799Hb98/yfv30dv3T7LHPl5rXAQCAABgMwwBAwAA2AwBEAAAwGYIgAAAADZDAAQAALAZAmApNGvWLNWtW1eBgYHq2LGjUlJSrC6pRH3xxRfq1auXatSoIYfDoeXLl1tdUolKSEhQ+/btVaFCBVWtWlV9+/bVzp07rS6rxMyePVstWrRw3ZQ1MjJSH3/8sdVleczUqVPlcDj05JNPWl1KiZk4caIcDofb1KRJE6vLKlEHDx7U/fffr8qVK6ts2bK66aabtGnTJqvLKjF169Yt9Bo6HA4NGzbM6tJKREFBgcaPH68bbrhBZcuWVf369TVlyhRbf3dvSSMAljKJiYmKi4vThAkTtGXLFrVs2VLR0dE6cuSI1aWVmLy8PLVs2VKzZs2yuhSP+PzzzzVs2DB98803Wr16tc6dO6e77rpLeXl5VpdWImrVqqWpU6dq8+bN2rRpk+644w716dNHP/zwg9WllbiNGzfqjTfeUIsWLawupcTdeOONOnTokGtav3691SWVmBMnTqhTp04qU6aMPv74Y23fvl2vvPKKQkNDrS6txGzcuNHt9Vu9erUkqV+/fhZXVjJeeOEFzZ49WzNnzlRaWppeeOEFvfjii3rttdesLs17GChVOnToYAwbNsz1uKCgwKhRo4aRkJBgYVWeI8n44IMPrC7Do44cOWJIMj7//HOrS/GY0NBQ480337S6jBJ18uRJo2HDhsbq1auNLl26GCNGjLC6pBIzYcIEo2XLllaX4TGjRo0ybr31VqvLuKZGjBhh1K9f33A6nVaXUiJ69uxpDB061G3evffea8TExFhUkfehB7AUyc/P1+bNmxUVFeWa5+Pjo6ioKCUnJ1tYGa5Gdna2JKlSpUoWV1LyCgoKtGzZMuXl5SkyMtLqckrUsGHD1LNnT7fPozf58ccfVaNGDdWrV08xMTFKT0+3uqQS89FHH6ldu3bq16+fqlatqtatW2vevHlWl+Ux+fn5evvttzV06FA5HA6ryykRt9xyi5KSkrRr1y5J0tatW7V+/Xp1797d4sq8B7fULkUyMzNVUFCg8PBwt/nh4eHasWOHRVXhajidTj355JPq1KmTmjdvbnU5Jeb7779XZGSkzpw5o/Lly+uDDz5Qs2bNrC6rxCxbtkxbtmzRxo0brS7FIzp27KhFixapcePGOnTokCZNmqTOnTtr27ZtqlChgtXlXbWff/5Zs2fPVlxcnMaOHauNGzfqiSeekL+/vwYPHmx1eSVu+fLlysrK0pAhQ6wupcSMHj1aOTk5atKkiXx9plQJBQAACmRJREFUfVVQUKDnnntOMTExVpfmNQiAgAcNGzZM27Zt86rzqySpcePGSk1NVXZ2tt59910NHjxYn3/+uVeEwP3792vEiBFavXq1AgMDrS7HI37bi9KiRQt17NhREREReuedd/Tggw9aWFnJcDqdateunZ5//nlJUuvWrbVt2zbNmTPHKwPg/Pnz1b17d9WoUcPqUkrMO++8oyVLlmjp0qW68cYb9f/bu9vYpso+DODXoeOUgRW2MdiLtHbOjvLqGJmZRDcyGrbgEokv05BQXSB8YGaAkEiWoDGyRYMGBDEsmmYkDkwE1I0Iy4BajBLmRgOaMVjdC4EBMl20zNTQ/p8P5mlSt+eJytnO6Ll+ST/svk/PrtN92NVz7p76/X5s2LABGRkZcfk31AML4Dgyffp0mEwm3LhxI2b8xo0bSEtL0ykV/VuVlZVoamqCz+fDAw88oHccTamqiuzsbABAXl4eWltbsWvXLuzbt0/nZHevra0NN2/exKJFi6Jj4XAYPp8Pe/bsQSgUgslk0jGh9qZNmwaHw4Guri69o2giPT192JsRp9OJQ4cO6ZRo9PT29qKlpQWHDx/WO4qmtmzZgldffRXPP/88AGD+/Pno7e1FbW0tC6BGuAZwHFFVFXl5eThx4kR0LBKJ4MSJE3G3viqeiQgqKytx5MgRnDx5Ena7Xe9Ioy4SiSAUCukdQxPFxcW4cOEC/H5/9LF48WKsWrUKfr8/7sofAASDQQQCAaSnp+sdRRNLliwZduulS5cuwWaz6ZRo9Hg8HsyYMQMrVqzQO4qmhoaGMGFCbEUxmUyIRCI6JYo/PAM4zmzatAlutxuLFy9Gfn4+du7cidu3b+Oll17SO5pmgsFgzJmG7u5u+P1+JCcnw2q16phMG+vXr0dDQwM+//xzWCwWXL9+HQAwdepUJCYm6pzu7m3duhWlpaWwWq347bff0NDQAK/Xi+PHj+sdTRMWi2XYes0pU6YgJSUlbtZxbt68GWVlZbDZbLh27Rpee+01mEwmvPDCC3pH08TGjRvx2GOPoaamBs899xzOnj2Luro61NXV6R1NU5FIBB6PB263GwkJ8fXvvKysDNu3b4fVasXcuXNx7tw5vPvuu6ioqNA7WvzQ+2PINNzu3bvFarWKqqqSn58vZ86c0TuSpk6dOiUAhj3cbrfe0TQx0rEBEI/Ho3c0TVRUVIjNZhNVVSU1NVWKi4ulublZ71ijKt5uA1NeXi7p6emiqqpkZmZKeXm5dHV16R1LU42NjTJv3jwxm80ye/Zsqaur0zuS5o4fPy4ApLOzU+8omvv111+lqqpKrFarTJo0SbKysqS6ulpCoZDe0eKGIsLbahMREREZCdcAEhERERkMCyARERGRwbAAEhERERkMCyARERGRwbAAEhERERkMCyARERGRwbAAEhERERkMCyARGdLQ0BCefvpp3H///VAUBYODgyOOEdHY8/l8KCsrQ0ZGBhRFwWefffaP9yEi2LFjBxwOB8xmMzIzM7F9+/ZRSHtvYgEkorhz5coVVFRUICMjA6qqwmazoaqqCgMDA9Ft6uvrcfr0aXzzzTfo7+/H1KlTRxy7G16vl0WS6F+4ffs2Fi5ciPfff/9f76OqqgoffvghduzYgYsXL+KLL75Afn6+hinvbfH15YFEZHg//vgjCgoK4HA4cODAAdjtdvzwww/YsmULvvzyS5w5cwbJyckIBAJwOp0x3+870hgRjb3S0lKUlpb+z/lQKITq6mocOHAAg4ODmDdvHt566y0UFRUBADo6OvDBBx/g+++/R05ODgDAbrePRfR7Bs8AElFcWb9+PVRVRXNzMwoLC2G1WlFaWoqWlhZcvXoV1dXVKCoqwjvvvAOfzwdFUVBUVDTiGADs3bsXDz/8MCZNmoSZM2fimWeeif6uSCSC2tpa2O12JCYmYuHChfj0008BAD09PVi6dCkAICkpCYqi4MUXXxzrl4MoLlVWVuLbb7/FwYMHcf78eTz77LMoKSnB5cuXAQCNjY3IyspCU1MT7HY7HnzwQaxZswY///yzzsnHEZ2/i5iISDMDAwOiKIrU1NSMOL927VpJSkqSW7duydq1a6WgoED6+/tlYGBABgYGho21traKyWSShoYG6enpkfb2dtm1a1d0f2+++abMnj1bjh07JoFAQDwej5jNZvF6vXLnzh05dOiQAJDOzk7p7++XwcHBsXopiOIGADly5Ej0597eXjGZTHL16tWY7YqLi2Xr1q0iIrJu3Toxm83y6KOPis/nk1OnTskjjzwiS5cuHdPs4xkvARNR3Lh8+TJEBE6nc8R5p9OJX375BeFwGJMnT4aqqkhLS4vO/3XM6/ViypQpePLJJ2GxWGCz2ZCbmwvgz0tQNTU1aGlpQUFBAQAgKysLX3/9Nfbt24fCwkIkJycDAGbMmIFp06aN5qETGcaFCxcQDofhcDhixkOhEFJSUgD8eXY+FAph//790e0++ugj5OXlobOzM3pZ2MhYAIko7oiIJvtxuVyw2WzIyspCSUkJSkpKsHLlSkyePBldXV0YGhqCy+WKec4ff/wRLYlEpL1gMAiTyYS2tjaYTKaYufvuuw8AkJ6ejoSEhJiS+N83hn19fSyAYAEkojiSnZ0NRVHQ0dGBlStXDpvv6OhAUlISUlNT/9b+LBYL2tvb4fV60dzcjG3btuH1119Ha2srgsEgAODo0aPIzMyMeZ7ZbL77gyGiEeXm5iIcDuPmzZt4/PHHR9xmyZIluHPnDgKBAB566CEAwKVLlwAANpttzLKOZ/wQCBHFjZSUFLhcLuzduxe///57zNz169fx8ccfo7y8HIqi/O19JiQkYNmyZXj77bdx/vx59PT04OTJk5gzZw7MZjP6+vqQnZ0d85g1axYAQFVVAEA4HNbuIIkMIBgMwu/3w+/3AwC6u7vh9/vR19cHh8OBVatWYfXq1Th8+DC6u7tx9uxZ1NbW4ujRowCAZcuWYdGiRaioqMC5c+fQ1taGdevWweVyDbt0bFQsgEQUV/bs2YNQKITly5fD5/PhypUrOHbsGFwu1z++EWxTUxPee+89+P1+9Pb2Yv/+/YhEIsjJyYHFYsHmzZuxceNG1NfXIxAIoL29Hbt370Z9fT2AP880KIqCpqYm/PTTT9GzhkT0/3333XfIzc2NLqfYtGkTcnNzsW3bNgCAx+PB6tWr8corryAnJwdPPfUUWltbYbVaAQATJkxAY2Mjpk+fjieeeAIrVqyA0+nEwYMHdTumcUfvT6EQEWmtp6dH3G63zJw5UyZOnCizZs2Sl19+WW7duhXdpqqqSgoLC2Oe99ex06dPS2FhoSQlJUliYqIsWLBAPvnkk+h8JBKRnTt3Sk5OjkycOFFSU1Nl+fLl8tVXX0W3eeONNyQtLU0URRG32z1ah0xE9I8oIhqtliYiIiKiewIvARMREREZDAsgERERkcGwABIREREZDAsgERERkcGwABIREREZDAsgERERkcGwABIREREZDAsgERERkcGwABIREREZDAsgERERkcGwABIREREZDAsgERERkcH8B4qwzOYjyMGfAAAAAElFTkSuQmCC",
"analysis_date": 1592550893.563894, "plugin_version": "0.5.2"},
"known_vulnerabilities": {"summary": {"BackDoor_String": ["here is some data"]},
"analysis_date": 1591092565.987832, "plugin_version": "0.2",
"system_version": "3.7.1_1588174612"}
}
META_DICT = {
"device_name": "A devices name",
"device_class": "Router",
"device_part": "",
"hid": "Frauhhofer FKIE test_container v. 0.1",
"number_of_files": 3,
"release_date": "2019-01-24",
"size": 787,
"vendor": "Frauhhofer FKIE",
"version": "0.1"
}
},
"request": {
"uid": "418a54d78550e8584291c96e5d6168133621f352bfc1d43cf84e81187fef4962_787"
},
"request_resource": "/rest/firmware",
"status": 0,
"timestamp": 1548333492
"vendor": "a vendor",
"version": "version 42.13",
"release_date": "1970-01-01",
"hid": "some specs",
"size": 2315412323,
"number_of_included_files": 21,
"included_files": [1, 2, 3, 4, 5, 6, 7],
"total_files_in_firmware": 12
}
import pytest
from pdf_generator.tex_generation.template_engine import TemplateEngine
from test.data.test_dict import TEST_DICT
from test.data.test_dict import TEST_DICT, META_DICT
# pylint: disable=redefined-outer-name
TEST_DATA = {
'analysis': {'file_hashes': {'ssdeep': 'bla', 'sha1': 'blah'}},
'meta_data': {'device_name': 'test_device'}
}
# pylint: disable=redefined-outer-name
@pytest.fixture(scope='function')
......@@ -16,13 +12,10 @@ def stub_engine():
def test_latex_code_generation(stub_engine: TemplateEngine):
result = stub_engine.render_meta_template(TEST_DICT)
result = stub_engine.render_meta_template(META_DICT)
assert result
def test_render_template(tmpdir):
engine = TemplateEngine(template_folder='test', tmp_dir=tmpdir)
test_data = {'meta_data': '123', 'analysis': '456'}
output = engine.render_analysis_template(plugin='render_test', analysis=test_data)
assert output == 'Test - '
def test_render_template(stub_engine, tmpdir):
output = stub_engine.render_main_template(analysis=[TEST_DICT, META_DICT])
assert output
from pathlib import Path
import shutil
import PyPDF2
from docker_entry import main as main_docker_entry
# pylint: disable=redefined-outer-name
INTERFACE_DIR = Path('/tmp/interface')
OUTPUT_FILE = INTERFACE_DIR / 'pdf' / 'A_devices_name_analysis_report.pdf'
TEST_META_DATA = Path(__file__).parent / 'data' / 'meta.json'
TEST_ANALYSIS_DATA = Path(__file__).parent / 'data' / 'analysis.json'
def test_docker_entry():
(INTERFACE_DIR / 'data').mkdir(parents=True, exist_ok=True)
(INTERFACE_DIR / 'pdf').mkdir(parents=True, exist_ok=True)
shutil.copyfile(TEST_ANALYSIS_DATA, INTERFACE_DIR / 'data' / 'analysis.json')
shutil.copyfile(TEST_META_DATA, INTERFACE_DIR / 'data' / 'meta.json')
output = main_docker_entry()
assert output == 0, 'LaTeX PDF build unsuccessful'
assert OUTPUT_FILE.is_file()
try:
PyPDF2.PdfFileReader(open(str(OUTPUT_FILE), 'rb'))
except PyPDF2.utils.PdfReadError:
assert False, 'PDF could not be read'
......@@ -2,10 +2,11 @@ import json
from pathlib import Path
import pytest
from pdf_generator.generator import (
LOGO_FILE, MAIN_TEMPLATE, META_TEMPLATE, PLUGIN_TEMPLATE_BLUEPRINT, copy_fact_image, create_report_filename,
create_templates, execute_latex, render_analysis_templates
copy_fact_image, create_report_filename, create_templates, execute_latex, LOGO_FILE, MAIN_TEMPLATE, META_TEMPLATE
)
from test.data.test_dict import META_DICT, TEST_DICT
class MockEngine:
......@@ -13,8 +14,8 @@ class MockEngine:
pass
@staticmethod
def render_main_template(analysis, meta_data):
return '{}\n{}'.format(json.dumps(analysis), json.dumps(meta_data))
def render_main_template(analysis):
return json.dumps(analysis)
@staticmethod
def render_meta_template(meta_data):
......@@ -24,13 +25,18 @@ class MockEngine:
def render_analysis_template(_, analysis):
return json.dumps(analysis)
@staticmethod
def render_template_class():
return json.dumps('template_class.cls')
def exec_mock(*_, **__):
Path('test').write_text('works')
return '', 0
def test_execute_latex(monkeypatch, tmpdir):
monkeypatch.setattr('pdf_generator.generator.execute_shell_command', exec_mock)
monkeypatch.setattr('pdf_generator.generator.execute_shell_command_get_return_code', exec_mock)
execute_latex(str(tmpdir))
assert Path(str(tmpdir), 'test').exists()
......@@ -51,22 +57,9 @@ def test_create_report_filename(device_name, pdf_name):
assert create_report_filename({'device_name': device_name}) == pdf_name
def test_create_analysis_templates():
templates = render_analysis_templates(engine=MockEngine(), analysis={'test': {'result': 'data'}})
assert len(templates) == 1
filename, result_code = templates[0]
assert filename == PLUGIN_TEMPLATE_BLUEPRINT.format('test')
assert result_code == '{"result": "data"}'
def test_create_templates(monkeypatch, tmpdir):
monkeypatch.setattr('pdf_generator.generator.TemplateEngine', MockEngine)
create_templates(analysis={'test': {'result': 'data'}}, meta_data={}, tmp_dir=str(tmpdir))
create_templates(analysis=TEST_DICT, meta_data=META_DICT, tmp_dir=str(tmpdir))
assert Path(str(tmpdir), MAIN_TEMPLATE).exists()
assert Path(str(tmpdir), META_TEMPLATE).exists()
assert Path(str(tmpdir), PLUGIN_TEMPLATE_BLUEPRINT.format('test')).exists()
assert Path(str(tmpdir), PLUGIN_TEMPLATE_BLUEPRINT.format('test')).read_text() == '{"result": "data"}'
......@@ -2,10 +2,12 @@ from pathlib import Path
import pytest
from pdf_generator.tex_generation.template_engine import (
TemplateEngine, decode_base64_to_file, render_number_as_size, render_number_as_string, render_unix_time,
replace_characters_in_list, replace_special_characters, split_hash_string, split_long_lines
software_components, TemplateEngine, decode_base64_to_file, render_number_as_size, render_unix_time,
replace_special_characters, get_five_longest_entries
)
from test.data.test_dict import TEST_DICT
# pylint: disable=redefined-outer-name
......@@ -22,17 +24,6 @@ def test_byte_number_filter():
assert render_number_as_size(128000, verbose=False) == '125.00 KiB'
def test_nice_number_filter():
assert render_number_as_string(None) == 'not available'
assert render_number_as_string('no int') == 'not available'
assert render_number_as_string(12) == '12'
assert render_number_as_string(12.1) == '12.10'
assert render_number_as_string(12.101) == '12.10'
assert render_number_as_string(12.109) == '12.11'
assert render_number_as_string('12') == '12'
@pytest.mark.skip(reason='Since local time used, result is not stable')
def test_nice_unix_time():
assert render_unix_time(None) == 'not available'
......@@ -40,16 +31,6 @@ def test_nice_unix_time():
assert render_unix_time(10) == '1970-01-01 01:00:10'
def test_split_hash():
assert split_hash_string('X' * 62) == '{}\nX'.format('X' * 61)
assert split_hash_string('X' * 61) == 'X' * 61
def test_split_output_lines():
assert split_long_lines('X\nX') == 'X\nX'
assert split_long_lines('{}\nX'.format('X' * 93)) == '{}\nX\nX'.format('X' * 92)
def test_convert_base64_to_png_filter(tmpdir):
decode_base64_to_file('0000', 'testfile', str(tmpdir))
assert Path(str(tmpdir), 'testfile.png').read_bytes() == b'\xd3\x4d\x34'
......@@ -62,19 +43,28 @@ def test_filter_latex_special_chars():
assert replace_special_characters(r'100 $') == r'100 \$'
def test_filter_chars_in_list():
assert replace_characters_in_list([]) == []
assert replace_characters_in_list([r'safe', r'un\safe']) == ['safe', 'unsafe']
def test_render_meta_template(stub_engine):
assert stub_engine.render_meta_template(meta_data='anything') == 'Test anything - '
def test_render_main_template(stub_engine):
assert stub_engine.render_main_template(meta_data='anything', analysis='else') == 'Test anything - else'
def test_render_analysis_template(stub_engine):
assert stub_engine.render_analysis_template(plugin='non_existing', analysis='result') == 'Presenting: result'
assert stub_engine.render_main_template(analysis='else') == 'Test - else'
def test_get_five_longest_entries():
assert len(get_five_longest_entries(TEST_DICT['file_type']['summary'], top=3)) <= 3
longest_dict = get_five_longest_entries(TEST_DICT['file_type']['summary'], top=1)
assert len(longest_dict) == 1
assert 'compression/zlib' in longest_dict.keys()
@pytest.mark.parametrize('test_input, expected_output', [
('FOO 1.0', '1.0}{FOO'),
('1.0 FOO', '1.0}{FOO'),
('FOO BAR 1.0', '1.0}{FOOBAR'),
('FOO', '}{FOO'),
(' FOO ', '}{FOO'),
(' FOO BAR 1.0 ', '1.0}{FOOBAR'),
])
def test_software_components(test_input, expected_output):
assert software_components(test_input) == expected_output
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment