


cwe_checker

Hunting Binary Code Vulnerabilities 
Across CPU Architectures



Challenges of Bug Hunting in the IoT World

• Bug hunting through reverse engineering is time 
consuming and tedious
• Firmwares can be large  impossible to reverse 

everything by hand
• Many different CPU architectures

x86/x64, PowerPC, MIPS, ARM, …
• Each CPU-architecture has its own instruction set

e.g. x86/x64 alone has hundreds of assembly 
instructions

• Assembly instructions can have complex side effects
e.g. setting CPU flags



cwe_checker - Overview

• Automating the process of finding vulnerable code 
patterns, categorization via CWE (common weakness 
enumeration) numbers

• Based on Binary Analysis Platform (BAP)
• Using BAP‘s intermediate representation to achieve 

CPU-architecture independence
• Modular structure

• 13 checks using static analysis
• 4 checks using symbolic execution

• Easy Deployment through Docker or Opam

Binary Program

Intermediate 
Representation

CWE Reports

Disassembling

Run checks



cwe_checker - Example

Disassemble & Lift to IR

Run cwe_checker modules

Binary Program



cwe_checker – Some Static Analysis Modules

• CWE 190: Integer Overflow
• CWE 332: Insufficient Entropy in PRNG
• CWE 426: Untrusted Search Path
• CWE 467: Use of sizeof() on a Pointer Type
• CWE 476: NULL Pointer Dereference
• CWE 560: Use of umask() with chmod-style arguments
• CWE 676: Use of Potentially Dangerous Function

And many more!



CWE-476: Possible NULL Pointer Dereference

• Many functions may return NULL on failure (e.g. malloc, open, etc.)
 Return values must be checked!

• Via DataFlow Analysis:
• Unchecked return values are tainted
• Check of a tainted value  remove taint
• Memory access through a tainted value  report possible CWE hit



CWE-476: Possible NULL Pointer Dereference

DEMO



Integration into Other Tools

Visualize results in IDA Pro Integration into FACT

Ghidra integration coming soon!



Conclusion

Get it now!
https://github.com/fkie-cad/cwe_checker
LGPL 3.0 License

• cwe_checker is a tool to heuristically detect bug classes
• Thanks to its foundation on BAP it is able analyze binaries of 

many architectures including x86/x64, PowerPC, MIPS, ARM
• Currently over 15+ checks
• Mostly based on static analysis
 Beware of false positives/negatives

• Easy to add your own check!
• Tool Integration is a mayor concern:

FACT & IDA Pro (and Ghidra planned)

https://github.com/fkie-cad/cwe_checker

