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• The cwe_checker detects potential bugs and vulnerabilities in binaries

• Helps you focus the manual analysis on important parts
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Example: CWE-476 Null 

Pointer Dereference

• Via taint analysis

Taint source: Function that

may return Null pointer

Good sink: Tainted value

gets checked for being null

Bad sink: Tainted value

gets dereferenced



#BHUSA @BlackHatEvents 
Information Classification: General

Analyze ELF binaries of many different CPU architectures

• x86, ARM, MIPS, PowerPC and more

• Experimental support for bare-metal and PE binaries exists

Contains checks for many bug types

• Currently checks for over 16 different CWE types implemented

• Behavior of checks configurable

Fast analysis

• Good for quick initial assessments

• Scan whole firmware images for certain bug types
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Bugs need to be verified manually

• Path insensitivity will lead to false positives for most checks

Not suited for analysis of binaries written in other languages than C

• Control flow graph recovery not (yet) good enough for C++ and other languages
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• The cwe_checker is a tool to quickly find potential bugs and

vulnerabilities in firmware binaries.

• Detects 16+ different CWE types

• Based on static analysis

 Beware of false positives/negatives!

• Easy to try out – just pull the Docker image

fkiecad/cwe_checker

• Easy to integrate into your own toolchain

thanks to JSON output

https://github.com/fkie-cad/cwe_checker

LGPL 3.0 Licence

@cwe_checker

Summary

https://github.com/fkie-cad/cwe_checker

