
#BHUSA @BlackHatEvents

cwe_checker

Architecture-Independent Binary Vulnerability Analysis



#BHUSA @BlackHatEvents

cwe_checker

Architecture-Independent Binary Vulnerability Analysis

#Who Am I

Nils Enkelmann

IT Security Researcher

Fraunhofer FKIE



#BHUSA @BlackHatEvents 
Information Classification: General

Security analysis of programs running on 
embedded devices is difficult



#BHUSA @BlackHatEvents 
Information Classification: General

Security analysis of programs running on 
embedded devices is difficult

Emulation is

difficult

No access to

source code

Cannot perform

dynamic analyses

directly on the device

Reversing binary

code is too time-

consuming



#BHUSA @BlackHatEvents 
Information Classification: General

Security analysis of programs running on 
embedded devices is difficult

Emulation is

difficult

No access to

source code

Cannot perform

dynamic analyses

directly on the device

Reversing binary

code is too time-

consuming



#BHUSA @BlackHatEvents 
Information Classification: General



#BHUSA @BlackHatEvents 
Information Classification: General

• The cwe_checker detects potential bugs and vulnerabilities in binaries

• Helps you focus the manual analysis on important parts



#BHUSA @BlackHatEvents 
Information Classification: General

Demo



#BHUSA @BlackHatEvents 
Information Classification: General

Disassemble and build

control flow graphBinary



#BHUSA @BlackHatEvents 
Information Classification: General

Disassemble and build

control flow graph

Abstract 

program

states

Value Set Analysis

Points-to Analysis
Binary



#BHUSA @BlackHatEvents 
Information Classification: General

Disassemble and build

control flow graph

Abstract 

program

states

CWE-specific checks

Value Set Analysis

Points-to Analysis
Binary

• CWE …

• CWE …

• CWE …



#BHUSA @BlackHatEvents 
Information Classification: General

Example: CWE-476 Null 

Pointer Dereference

• Via taint analysis



#BHUSA @BlackHatEvents 
Information Classification: General

Example: CWE-476 Null 

Pointer Dereference

• Via taint analysis

Taint source: Function that

may return Null pointer



#BHUSA @BlackHatEvents 
Information Classification: General

Example: CWE-476 Null 

Pointer Dereference

• Via taint analysis

Taint source: Function that

may return Null pointer

Good sink: Tainted value

gets checked for being null



#BHUSA @BlackHatEvents 
Information Classification: General

Example: CWE-476 Null 

Pointer Dereference

• Via taint analysis

Taint source: Function that

may return Null pointer

Good sink: Tainted value

gets checked for being null

Bad sink: Tainted value

gets dereferenced



#BHUSA @BlackHatEvents 
Information Classification: General

Analyze ELF binaries of many different CPU architectures

• x86, ARM, MIPS, PowerPC and more

• Experimental support for bare-metal and PE binaries exists

Contains checks for many bug types

• Currently checks for over 16 different CWE types implemented

• Behavior of checks configurable

Fast analysis

• Good for quick initial assessments

• Scan whole firmware images for certain bug types



#BHUSA @BlackHatEvents 
Information Classification: General

Bugs need to be verified manually

• Path insensitivity will lead to false positives for most checks

Not suited for analysis of binaries written in other languages than C

• Control flow graph recovery not (yet) good enough for C++ and other languages



#BHUSA @BlackHatEvents 
Information Classification: General

• The cwe_checker is a tool to quickly find potential bugs and

vulnerabilities in firmware binaries.

• Detects 16+ different CWE types

• Based on static analysis

 Beware of false positives/negatives!

• Easy to try out – just pull the Docker image

fkiecad/cwe_checker

• Easy to integrate into your own toolchain

thanks to JSON output

https://github.com/fkie-cad/cwe_checker

LGPL 3.0 Licence

@cwe_checker

Summary

https://github.com/fkie-cad/cwe_checker

