
p-fuzz: an efficient fuzzing tool with parallel
computing mechanism

*Note: Sub-titles are not captured in Xplore and should not be used

1st Given Name Surname
dept. name of organization (of Aff.)

name of organization (of Aff.)
City, Country
email address

2nd Given Name Surname
dept. name of organization (of Aff.)

name of organization (of Aff.)
City, Country
email address

3rd Given Name Surname
dept. name of organization (of Aff.)

name of organization (of Aff.)
City, Country
email address

4th Given Name Surname
dept. name of organization (of Aff.)

name of organization (of Aff.)
City, Country
email address

5th Given Name Surname
dept. name of organization (of Aff.)

name of organization (of Aff.)
City, Country
email address

6th Given Name Surname
dept. name of organization (of Aff.)

name of organization (of Aff.)
City, Country
email address

Abstract—This document is a model and instructions for
LATEX. This and the IEEEtran.cls file define the components of
your paper [title, text, heads, etc.]. *CRITICAL: Do Not Use
Symbols, Special Characters, Footnotes, or Math in Paper Title
or Abstract.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

Nowadays, software is applied widely in our life, which
accompanied with the occurrence of security vulnerabilities.
Attackers always utilize these bugs and errors in codes to
make target crash or grab some sensitive data. Therefore, it
is urgently needed for us to pay close attention to find an
effective approach to test software.

Software testing has two major technologies: symbolic
execution and fuzzing. The symbolic execution abstracts the
input values as symbols, which could lead symbolic engine
to explore as many as possible execution paths at the same
time. Then getting the results by solving constraints. However,
the whole process of symbolic execution results in state
space explosion which is still a bottleneck. As opposed to
symbolic execution, fuzzing provides invalid, unexpected or
random data to the inputs of a program which significantly
enhances the performance of software testing. Fuzzing tools
can be classified into three types based on the knowledge and
information acquired from the source code of target programs,
they are white-box, black-box, and grey-box fuzzer. The white-
box fuzzer has full knowledge of the source code (eg. internal
logic and structure) and uses the control structure of the
procedural design to derive test cases. In contrast, The black-
box fuzzer doesn’t have any knowledge of source code but
it generates test cases randomly and swiftly. The grey-box

Identify applicable funding agency here. If none, delete this.

fuzzer try to combine the efficiency and effectiveness of black-
box fuzzers and white-box fuzzers, which masters limited
knowledge of the internal working of target programs.

Furthermore, existing fuzzers have been effective mainly in
discovering superficial vulnerabilities and fail to uncover the
vulnerabilities in deep paths without valid guidance. Through
collecting the feedback information of target programs, grey-
box fuzzers show the competitiveness of mutating test cases
with valid guidance. It is implemented by lightweight in-
strumentation or other mechanisms to get program execution
feedback, such as code coverage for the fuzzing process.
American Fuzz Lop(AFL) is a state-of-the-art grey-box fuzzer
whose principles are speed, reliability, and ease of use. AFL
instruments the compiled program to get the edge cover-
age information. It adopts a deterministic strategy and non-
deterministic strategy to generate test cases by mutating input
seeds. The “interesting” change will be recorded for further
detecting. Several works achieved significant results based
on making an extension of the AFL. Böhme et al. designed
AFL-fast which assigned more mutation energy to interesting
paths. Gan et al introduced CollAFL which mitigated the
path collisions by providing more accurate coverage informa-
tion. Böhme also implemented a directed grey-box fuzzing
tool AFLGO towards the dangerous locations which tend to
produce vulnerabilities. All of these extensions gained higher
coverage and found more bugs than AFL. Zhang et al. leverage
hardware mechanism (Intel Processor Trace) to collect branch
information, and feed this information back to the fuzzing
process.

Nevertheless, there are some common challenges in single-
computer structure fuzzing.

• The fuzzing process contains too many tedious mutations.



• The fuzzing efficiency and effectiveness are relatively low
because of executing too much-repeated work.

In order to address the challenges, many researchers leverage
parallel computing technology to speed up the fuzzing process.
Parallel computing indicates a type of computation where
many calculations are executed simultaneously. It collects
a group of computing resources to decompose the heavy
fuzzing task. Test cases produce by mutation are allocated
to each computer, which balances the system workload. Some
researchers have proceeded works about parallel or distributed
fuzzing. Xie using grid computing for large scale fuzzing
in 2010, which reduce almost two-thirds of fuzzing time. It
was implemented by dividing fuzzing jobs into tasks, storing
them in a server and scheduling remote clients to download
them. Lian et al. proposed a dynamic resource-aware approach
for parallel fuzzing. Some distributed fuzzing tools based on
the parallel function of AFL are implemented in the client-
server model. The clients synchronize their queue to server
continuously which benefit from each other’s work.

Despite the parallel computing technology accelerate the
fuzzing process, it faces several challenges and difficulties:

• The client computers are always fuzzing same test cases
caused the concurrency and race.

• The transferring speed is limited while the quantity of
common resources is large enough.

• Fixed synchronizing time entails the response latency to
a new test case.

• All clients share the same seeds get from the server.
The approach tires clients and entails the low resources
utilization of test cases.

By summarizing these research above, we propose a parallel
fuzzing platform —p-fuzz, which not only alleviates the
problems but also speeds up the fuzzing process by leveraging
abundant parallel resources.

II. BACKGROUND

A. Parallel computing technology

Parallel computing specifies a type of computation where
many calculations are executed simultaneously. According to
different granularities, parallel computing can be classified
into bit-level, instruction-level, data-level, and task-level par-
allelism. The task-level parallelism means a large job can be
divided into several small tasks, and each node of parallel
computers gets a piece of the task and execute it. In this paper,
we talk about task-level parallelism.

The origin of parallel computing technology dates back to
1950s. John Cocke and Daniel Slotnick discuss the use of
parallelism in numerical calculations. In the 1970s, The e-
mail was invented and became the earliest and most successful
example of a large-scale distributed application in ARPANET.
By demanding and increase exponentially, distributed and
parallel computing became its own branch of computer science
in the 1980s. In the 1990s, client-server architecture appeared
and became popular. After 2000, With the big data era com-
ing, grid computing and cloud computing provided various,

massive and prompt services by their extraordinary computing
ability. Nowadays, supercomputer plays an important role
in computing. It handles a wide range of computationally
intensive tasks in various fields.

To be specific. a distributed parallel application always falls
into one of several basic architectures: client-server, three-
tier, n-tier, or peer-to-peer and database-centric Architecture.
Database-centric architecture specifies the software architec-
ture in which databases is a core of the whole system. The ar-
chitecture provides reliability, performance, and capacity, and
scalability. We implement the p-fuzz platform with the help
of database-centric architecture, and details of implementation
are discussed in section III.

B. The details about AFL

In this section, we will discuss fuzzing techniques and AFL
in detail. These limitations motivate us to propose our p-fuzz.
American Fuzzy Lop(AFL) is an instrumentation-guided grey-
box fuzzer. The fuzzer stays brute-force that makes the fuzzing
process keep speed. AFL is designed for such goals, i.e,

• Speed: adopting an appropriate instrument approach not
only gives guidance to fuzzing but also keeps its native
speed.

• Rock-solid reliability, it adapts to real-world targets.
• Simplicity. AFL is simple and user-friendly.

There are two things we need to care about: the seed and
bitmap.

1) Seed: Seed indicates the test cases which trigger the
fuzzer to traverse new interesting paths. A queue is maintained
to store the seeds. The high-quality corpus of candidate files
will be selected as interesting seeds for further rounds.

2) Bitmap: Before talking about bitmap, we need to define
the “new branch”. If there are three basic blocks A, B, C in a
program, the tuple (AB, BC) describes a branch transition. A
new branch indicates a branch transition which doesn’t appear
before. In AFL, if a new branch is triggered by a test case, it
is considered as a new path. All of the branches information
is recorded in the bitmap. Bitmap describes the coverage of
fuzzing, which stored in shared memory. the index of a bitmap
is produced by previous basic block and current basic block.
How to index a branch transition is shown as following. A
and B represent previous basic block and current basic block
respectively.

(A⊕B)%BITMAP SIZE (1)

However, AFL is inaccurate because of the path collision
caused by an infinite space of bitmap. It prevents AFL from
discovering potential paths that lead to new crashes.

C. The discussion of parallel mechanism in fuzzing

In fact, if you only put a single job on a multi-core system or
a multi-machine computing group, you will be underutilizing
the hardware. At this time, parallel the computing resources
can make full use of hardware and bring profit to low-
efficiency fuzzing process. We will discuss how to make
parallelization in this section.



Algorithm 1 123
inti = 0
scanf(”%d”,&i)
if i > 0 then

if i < 100000&&i >= 1000 then
if i >= 5000&&i < 10000 then

if i >= 7000&&i < 8000 then
if i >= 7500&&i <= 7599 then

if i >= 7545&&i < 7571 then
printf(”win”)

end if
end if

end if
end if

end if
end if

1) A Naı̈ve approach: A naı̈ve approach to improve the
efficiency of fuzzing is starting a group of fuzzers. However,
the approach fails to produce a satisfying result and occupy
resources, we take a simple experiment to show this case. As
is shown in algorithm.1 the simple program contains 6 levels
branches. If we only run a single AFL engine, it reaches the
“win” location in 2 minutes and 34s. Compared with the single
engine, we run two engines in two cores simultaneously, the
time of reaching “win” location keeps at the same level.

Also, we respectively run an AFL engine and two AFL
engines in two cores on a target program “uniq” in lava-m,
and compare their bitmap density. In one hour, a single engine
and two engines get same results. Both of them hit 214 new
branches, which are shown in bitmaps.

2) Previous parallel fuzzing application: There are two
fuzzing tools extent the parallel function in AFL. One is
Roving, which is implemented by running multiple copies of
AFL on multiple machines in a cluster, all of them fuzzing
the same target. It benefits from the client-server structure
which shares crashes, hangs, and queues of each client. Every
300 seconds, the client update the fuzzing environment by
uploading and downloading changes. The whole framework is
scheduled by the central server.

The other is distributed fuzzing. The main work of dis-
tributed fuzzing is similar to roving, and the difference of
them is implementation. the sharing data is handled by PHP
scripts in fuzzing server. All of the target projects are stored
in a server. Clients download 1 or more projects(according to
CPU cores) and AFL fuzzes program from the server. New
queue and hangs and crashes produced by a client will be
synchronized to the server and downloaded by other clients in
fixed time gap.

Although the two frameworks utilize the computing re-
sources and parallel the fuzzing progresses, which makes each
client benefits from each other’s work, they have drawbacks
as below.

• As time goes by, the seeds, queues, crashes and hangs
entail the synchronizing speed slower and slower.

• This kind of sharing mechanism makes all of the clients
always fuzzing the same seeds.

• The server accepts all data from clients updated, which
will result in security problems.

D. Concurrency and data race

In parallelization computing, some uncontrolled accesses
to shared data happen simultaneously, which results in race
conditions. Data races are race conditions occur at memory
access level, which are the most common causes of the
concurrency errors and bugs.

A data race occurs when two actions are accessing the same
memory, and at least one of the two accesses is a write, and
the sequence of accesses is not assured by synchronization
primitives. To prevent memory access from data race, some
methods such as lock, semaphore, and mutex are adopted. The
database always adopts transactions to solve some level of data
races after recovery from a crash to maintain the atomicity,
consistency, isolation, and durability.

III. METHODOLOGY

To improve the fuzzing speed and make full use of comput-
ing resources, we design p-fuzz, which is a parallel fuzzing
framework.

A. The algorithm of balancing workloads

(a) The example of distributing
workloads by previous works

(b) The example of distributing
workloads by p-fuzz

Fig. 1. Example of distributing workloads

Hardware resources and fuzzing tasks are two entities of
parallel fuzzing. And the most important work is to distribute
fuzzing tasks to hardware resources appropriately. previous
studies show us two drawbacks in tackling this work:

• Underutilizing the hardware resources, which burdens the
single core with many fuzzing tasks.

• Sharing all information including(seeds, queues, crashes
and hangs) with each of client, which may results all
computing cores do repeated work and doesn’t fully
reflect the advantages of parallel. This case is depicted
in Fig.1(a).

To make full use of hardware resources and enhance fuzzing
efficiency, we schedule the fuzzing tasks to balance workload
with the help of Database-centric architecture as Fig.1(b).
Database-centric architecture put a database as a core of the
whole system, and other hardware resources act as clients



to communicate with the database. The p-fuzz framework is
designed based on the database-centric architecture as shown
in Fig.2. We deploy a server with a database to communicate
with other hardware resources. Also, we mark the sharing
records with flags and time stamps in the database, to differen-
tiate whether this record is occupied by a client. Furthermore,
we start services to monitor the server which can not only
schedule the fuzzing tasks, but also solve the race problem
from parallelization. In this way, all of the hardware resources
get different seeds and do different tasks in the scheduling of
p-fuzz mechanism.

Fig. 2. the framework overview of p-fuzz

B. Immediate response to update

Different from roving and distributed fuzzing which syn-
chronizes the sharing data in a fixed time gap, p-fuzz updates
the new seeds and bitmap data to the database when AFL
produces them.

When a test case triggers a new interesting path in the
fuzzing process, the test case will be uploaded as a record
in the database. Also, the bitmap stored in the database will
be updated in time when a client find of a new path.

It’s a prompt action to make all clients in the system get
the information immediately.

C. Data race handling

1) Flag:two clients want to access the same seed simulta-
neously.: As above mentioned, we sharing seeds each AFL
produced by storing them into a database. Different clients
access to different seeds to enhance the fuzzing efficiency.
However, when two clients access to a seed simultaneously,
a data race happen. The same seed fuzzed repeatedly will
produce a similar result.

To alleviate this case, we set a flag with seeds, which marks
whether this seed is fuzzing by a client. If the flag is “1”, the
client will choose other seeds to fuzz.

2) Service:some clients update bitmap in the database si-
multaneously: We store the bitmap as a record in the database
for sharing. A data race happen as shown in Fig.3. some

bitmaps with “1” or “0” represent the path uncovered or
covered. There are two clients updating their new bitmaps
together(Fig.3(b)(c)). If we do not control the updating pro-
cess, information will get lost which is shown in Fig.3(d).

To alleviate this case, we start a service in the server
to maintain the sequence of updating. The service builds a
queue to store the bitmap temporarily. When bitmaps come
up together, they are enqueued according to the time order.
The database merges these bitmaps in the queue one by one
so that the bitmap maintains all necessary information.

(a) the origin
bitmap

(b) the bitmap
updated from
client1

(c) the bitmap
updated from
client2

(d) the final
bitmap

Fig. 3. race of updating bitmap from different clients

3) Time stamp:a client quits fuzzing accidently but doesn’t
finish a complete fuzzing round: as above mentioned, we set a
flag to mark whether the seed is occupied by a client. However,
in parallel computing, a client sometimes quit with errors or
other accidents. At this time, the flag is “1” but the fuzzing
process of the corresponding seed isn’t finished.

To solve this problem, we put a time stamp when the flag is
set to “1”. We also monitor if the fuzzing is overtime by the
current time minus the time stamp. This mechanism assures
exceptions won’t disturb the parallel fuzzing.

IV. IMPLEMENTATION

A. Workflow

The workflow of p-fuzz is shown below:

• Setting up the database in the server machine
• Configuring the services
• Starting afl in each clients
• Getting the results

B. Server

The server machine is the core of the whole system. We
deploy a MongoDB database on the server to store the sharing
data.

(a) the seed collection in the database

(b) the bitmap collection in the database

Fig. 4. the two collections of database



1) MongoDB: MongoDB is an open-source document
database, which with high performance, high availability and
automatic scaling.

As shown in Fig.4(a)(b), We set two collections in the
database. One is “seed”, the first row is the key to the
collection which is a hash value of file name , the second
row records the content of seed, the third row is flag to
mark whether the seed is being fuzzed, and the last row is
timestamp, which is used to mark when the fuzzing start.

The other is “bitmap”, the first row is the key of the
collection is a hash value of file name, the second row records
the sharing bitmap.

2) Service: As shown in Fig.5, we start a service in the
server to maintain the sequence of updating. The service
binding with server keeps running and records the time of
each bitmap coming. When bitmaps from several clients are
sent to the server together, the service put them into a queue
according to the time order. The queue provides bitmaps to
the database to merge them into latest state continuously.

Fig. 5. the workflow of service

C. Client

We choose several computers in a local area network as
clients. We deploy p-fuzz client, which is a parallel fuzzing
AFL version on each client, and put the same program to
being fuzzed. At the start of fuzzing, each client downloads
a seed from the central database. When the fuzzing engine
finds some interesting paths, it updates these new seeds to the
central database. Furthermore, the write and read in fuzzing is
conducted by updating or downloading records to or from the
central database. We achieve sharing data in parallel fuzzing
by this mechanism

V. EXPERIMENT

A. experiment setup

B. comparison in crashes and branches

C. comparison in speed

VI. DISCUSSION

A. limitation

B. future work

VII. CONCLUSION

a+ b = γ (2)

Be sure that the symbols in your equation have been defined
before or immediately following the equation. Use “(2)”, not
“Eq. (2)” or “equation (2)”, except at the beginning of a
sentence: “Equation (2) is . . .”

A. LATEX-Specific Advice

Please use “soft” (e.g., \eqref{Eq}) cross references
instead of “hard” references (e.g., (1)). That will make it
possible to combine sections, add equations, or change the
order of figures or citations without having to go through the
file line by line.

Please don’t use the {eqnarray} equation environ-
ment. Use {align} or {IEEEeqnarray} instead. The
{eqnarray} environment leaves unsightly spaces around
relation symbols.

Please note that the {subequations} environment in
LATEX will increment the main equation counter even when
there are no equation numbers displayed. If you forget that,
you might write an article in which the equation numbers skip
from (17) to (20), causing the copy editors to wonder if you’ve
discovered a new method of counting.

BIBTEX does not work by magic. It doesn’t get the biblio-
graphic data from thin air but from .bib files. If you use BIBTEX
to produce a bibliography you must send the .bib files.

LATEX can’t read your mind. If you assign the same label to
a subsubsection and a table, you might find that Table I has
been cross referenced as Table IV-B3.

LATEX does not have precognitive abilities. If you put a
\label command before the command that updates the
counter it’s supposed to be using, the label will pick up the last
counter to be cross referenced instead. In particular, a \label
command should not go before the caption of a figure or a
table.

Do not use \nonumber inside the {array} environment.
It will not stop equation numbers inside {array} (there
won’t be any anyway) and it might stop a wanted equation
number in the surrounding equation.

B. Some Common Mistakes

• The word “data” is plural, not singular.
• The subscript for the permeability of vacuum µ0, and

other common scientific constants, is zero with subscript
formatting, not a lowercase letter “o”.

• In American English, commas, semicolons, periods, ques-
tion and exclamation marks are located within quotation
marks only when a complete thought or name is cited,
such as a title or full quotation. When quotation marks
are used, instead of a bold or italic typeface, to highlight
a word or phrase, punctuation should appear outside of
the quotation marks. A parenthetical phrase or statement
at the end of a sentence is punctuated outside of the
closing parenthesis (like this). (A parenthetical sentence
is punctuated within the parentheses.)

• A graph within a graph is an “inset”, not an “insert”. The
word alternatively is preferred to the word “alternately”
(unless you really mean something that alternates).



• Do not use the word “essentially” to mean “approxi-
mately” or “effectively”.

• In your paper title, if the words “that uses” can accurately
replace the word “using”, capitalize the “u”; if not, keep
using lower-cased.

• Be aware of the different meanings of the homophones
“affect” and “effect”, “complement” and “compliment”,
“discreet” and “discrete”, “principal” and “principle”.

• Do not confuse “imply” and “infer”.
• The prefix “non” is not a word; it should be joined to the

word it modifies, usually without a hyphen.
• There is no period after the “et” in the Latin abbreviation

“et al.”.
• The abbreviation “i.e.” means “that is”, and the abbrevi-

ation “e.g.” means “for example”.
An excellent style manual for science writers is [7].

C. Authors and Affiliations

The class file is designed for, but not limited to, six
authors. A minimum of one author is required for all confer-
ence articles. Author names should be listed starting from left
to right and then moving down to the next line. This is the
author sequence that will be used in future citations and by
indexing services. Names should not be listed in columns nor
group by affiliation. Please keep your affiliations as succinct as
possible (for example, do not differentiate among departments
of the same organization).

D. Identify the Headings

Headings, or heads, are organizational devices that guide the
reader through your paper. There are two types: component
heads and text heads.

Component heads identify the different components of
your paper and are not topically subordinate to each other.
Examples include Acknowledgments and References and, for
these, the correct style to use is “Heading 5”. Use “figure
caption” for your Figure captions, and “table head” for your
table title. Run-in heads, such as “Abstract”, will require you
to apply a style (in this case, italic) in addition to the style
provided by the drop down menu to differentiate the head from
the text.

Text heads organize the topics on a relational, hierarchical
basis. For example, the paper title is the primary text head
because all subsequent material relates and elaborates on this
one topic. If there are two or more sub-topics, the next
level head (uppercase Roman numerals) should be used and,
conversely, if there are not at least two sub-topics, then no
subheads should be introduced.

E. Figures and Tables

a) Positioning Figures and Tables: Place figures and
tables at the top and bottom of columns. Avoid placing them
in the middle of columns. Large figures and tables may span
across both columns. Figure captions should be below the
figures; table heads should appear above the tables. Insert

TABLE I
TABLE TYPE STYLES

Table Table Column Head
Head Table column subhead Subhead Subhead
copy More table copya
aSample of a Table footnote.

Fig. 6. Example of a figure caption.



figures and tables after they are cited in the text. Use the
abbreviation “Fig. 6”, even at the beginning of a sentence.

Figure Labels: Use 8 point Times New Roman for Figure
labels. Use words rather than symbols or abbreviations when
writing Figure axis labels to avoid confusing the reader. As an
example, write the quantity “Magnetization”, or “Magnetiza-
tion, M”, not just “M”. If including units in the label, present
them within parentheses. Do not label axes only with units. In
the example, write “Magnetization (A/m)” or “Magnetization
{A[m(1)]}”, not just “A/m”. Do not label axes with a ratio of
quantities and units. For example, write “Temperature (K)”,
not “Temperature/K”.

ACKNOWLEDGMENT

The preferred spelling of the word “acknowledgment” in
America is without an “e” after the “g”. Avoid the stilted
expression “one of us (R. B. G.) thanks . . .”. Instead, try
“R. B. G. thanks. . .”. Put sponsor acknowledgments in the
unnumbered footnote on the first page.

REFERENCES

Please number citations consecutively within brackets [1].
The sentence punctuation follows the bracket [2]. Refer simply
to the reference number, as in [3]—do not use “Ref. [3]”
or “reference [3]” except at the beginning of a sentence:
“Reference [3] was the first . . .”

Number footnotes separately in superscripts. Place the ac-
tual footnote at the bottom of the column in which it was
cited. Do not put footnotes in the abstract or reference list.
Use letters for table footnotes.

Unless there are six authors or more give all authors’ names;
do not use “et al.”. Papers that have not been published,
even if they have been submitted for publication, should be
cited as “unpublished” [4]. Papers that have been accepted for
publication should be cited as “in press” [5]. Capitalize only
the first word in a paper title, except for proper nouns and
element symbols.

For papers published in translation journals, please give the
English citation first, followed by the original foreign-language
citation [6].

REFERENCES

[1] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of
Lipschitz-Hankel type involving products of Bessel functions,” Phil.
Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955.

[2] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol.
2. Oxford: Clarendon, 1892, pp.68–73.

[3] I. S. Jacobs and C. P. Bean, “Fine particles, thin films and exchange
anisotropy,” in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New
York: Academic, 1963, pp. 271–350.

[4] K. Elissa, “Title of paper if known,” unpublished.
[5] R. Nicole, “Title of paper with only first word capitalized,” J. Name

Stand. Abbrev., in press.
[6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy

studies on magneto-optical media and plastic substrate interface,” IEEE
Transl. J. Magn. Japan, vol. 2, pp. 740–741, August 1987 [Digests 9th
Annual Conf. Magnetics Japan, p. 301, 1982].

[7] M. Young, The Technical Writer’s Handbook. Mill Valley, CA: Univer-
sity Science, 1989.

IEEE conference templates contain guidance text for compos-
ing and formatting conference papers. Please ensure that all
template text is removed from your conference paper prior to
submission to the conference. Failure to remove the template
text from your paper may result in your paper not being
published.


